Ketones as Electrophile in Nitroaldol Reaction: Synthesis of β,β-Disubstituted- 1,3-dinitroalkanes and Allylic Nitro Compounds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Chemical Society (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532021000801575 |
Resumo: | Abstract β,β-Disubstituted-1,3-dinitro compounds were obtained exclusively with an overall yield of 83% through a domino nitroaldol/elimination/1,4-addition process, when excess nitromethane was added to cyclohexanone or butanone using DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), as a basic catalyst. On the other hand, β-nitroalcohols could be obtained in 30-84% yield, when nitromethane reacts with different aliphatic ketones in stoichiometric amounts, in the presence of catalytic amounts of K2CO3(s), Amberlyst® -A21 or TBAF.3H2O (tetra-n-butylammonium fluoride trihydrate)/THF (tetrahydrofuran). In addition, a new and versatile route to obtainment of allylic nitro compounds, by treatment of acetylated nitroalcohols and aldehydes in catalytic amounts of DBU or TBAF.3H2O, via a one-pot elimination/nitroaldol reaction sequence, was developed. |
id |
SBQ-2_6fa2f3c37d30cc49b6b556a754fa8ce7 |
---|---|
oai_identifier_str |
oai:scielo:S0103-50532021000801575 |
network_acronym_str |
SBQ-2 |
network_name_str |
Journal of the Brazilian Chemical Society (Online) |
repository_id_str |
|
spelling |
Ketones as Electrophile in Nitroaldol Reaction: Synthesis of β,β-Disubstituted- 1,3-dinitroalkanes and Allylic Nitro Compoundsallylic nitro compoundsDBUdomino reactionreaction reversibleMichael additionHenry reactionAbstract β,β-Disubstituted-1,3-dinitro compounds were obtained exclusively with an overall yield of 83% through a domino nitroaldol/elimination/1,4-addition process, when excess nitromethane was added to cyclohexanone or butanone using DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), as a basic catalyst. On the other hand, β-nitroalcohols could be obtained in 30-84% yield, when nitromethane reacts with different aliphatic ketones in stoichiometric amounts, in the presence of catalytic amounts of K2CO3(s), Amberlyst® -A21 or TBAF.3H2O (tetra-n-butylammonium fluoride trihydrate)/THF (tetrahydrofuran). In addition, a new and versatile route to obtainment of allylic nitro compounds, by treatment of acetylated nitroalcohols and aldehydes in catalytic amounts of DBU or TBAF.3H2O, via a one-pot elimination/nitroaldol reaction sequence, was developed.Sociedade Brasileira de Química2021-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532021000801575Journal of the Brazilian Chemical Society v.32 n.8 2021reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0103-5053.20210055info:eu-repo/semantics/openAccessGomes,Alex O.Souza,Douglas L. F. deCosta,Jeronimo S.Pereira,Vera Lúcia P.eng2021-07-26T00:00:00Zoai:scielo:S0103-50532021000801575Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2021-07-26T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
Ketones as Electrophile in Nitroaldol Reaction: Synthesis of β,β-Disubstituted- 1,3-dinitroalkanes and Allylic Nitro Compounds |
title |
Ketones as Electrophile in Nitroaldol Reaction: Synthesis of β,β-Disubstituted- 1,3-dinitroalkanes and Allylic Nitro Compounds |
spellingShingle |
Ketones as Electrophile in Nitroaldol Reaction: Synthesis of β,β-Disubstituted- 1,3-dinitroalkanes and Allylic Nitro Compounds Gomes,Alex O. allylic nitro compounds DBU domino reaction reaction reversible Michael addition Henry reaction |
title_short |
Ketones as Electrophile in Nitroaldol Reaction: Synthesis of β,β-Disubstituted- 1,3-dinitroalkanes and Allylic Nitro Compounds |
title_full |
Ketones as Electrophile in Nitroaldol Reaction: Synthesis of β,β-Disubstituted- 1,3-dinitroalkanes and Allylic Nitro Compounds |
title_fullStr |
Ketones as Electrophile in Nitroaldol Reaction: Synthesis of β,β-Disubstituted- 1,3-dinitroalkanes and Allylic Nitro Compounds |
title_full_unstemmed |
Ketones as Electrophile in Nitroaldol Reaction: Synthesis of β,β-Disubstituted- 1,3-dinitroalkanes and Allylic Nitro Compounds |
title_sort |
Ketones as Electrophile in Nitroaldol Reaction: Synthesis of β,β-Disubstituted- 1,3-dinitroalkanes and Allylic Nitro Compounds |
author |
Gomes,Alex O. |
author_facet |
Gomes,Alex O. Souza,Douglas L. F. de Costa,Jeronimo S. Pereira,Vera Lúcia P. |
author_role |
author |
author2 |
Souza,Douglas L. F. de Costa,Jeronimo S. Pereira,Vera Lúcia P. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Gomes,Alex O. Souza,Douglas L. F. de Costa,Jeronimo S. Pereira,Vera Lúcia P. |
dc.subject.por.fl_str_mv |
allylic nitro compounds DBU domino reaction reaction reversible Michael addition Henry reaction |
topic |
allylic nitro compounds DBU domino reaction reaction reversible Michael addition Henry reaction |
description |
Abstract β,β-Disubstituted-1,3-dinitro compounds were obtained exclusively with an overall yield of 83% through a domino nitroaldol/elimination/1,4-addition process, when excess nitromethane was added to cyclohexanone or butanone using DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), as a basic catalyst. On the other hand, β-nitroalcohols could be obtained in 30-84% yield, when nitromethane reacts with different aliphatic ketones in stoichiometric amounts, in the presence of catalytic amounts of K2CO3(s), Amberlyst® -A21 or TBAF.3H2O (tetra-n-butylammonium fluoride trihydrate)/THF (tetrahydrofuran). In addition, a new and versatile route to obtainment of allylic nitro compounds, by treatment of acetylated nitroalcohols and aldehydes in catalytic amounts of DBU or TBAF.3H2O, via a one-pot elimination/nitroaldol reaction sequence, was developed. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532021000801575 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532021000801575 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.21577/0103-5053.20210055 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Journal of the Brazilian Chemical Society v.32 n.8 2021 reponame:Journal of the Brazilian Chemical Society (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Journal of the Brazilian Chemical Society (Online) |
collection |
Journal of the Brazilian Chemical Society (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
||office@jbcs.sbq.org.br |
_version_ |
1750318184390459392 |