Construction and Evaluation of a Graphene Oxide Functionalized Aminopropyltriethoxy Silane Surface Molecularly Imprinted Polymer Potentiometric Sensor for Dipyridamole Detection in Urine and Pharmaceutical Samples

Detalhes bibliográficos
Autor(a) principal: Mirzajani,Roya
Data de Publicação: 2019
Outros Autores: Arefiyan,Ehsan
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019000901874
Resumo: A dipyridamole (DIP) based surface molecularly imprinted polymer (MIP) was synthesized and applied as a sensing agent in a sensing layer of a new modified potentiometric carbon paste electrode (CPE). The potentiometric modified CPEs (GO@SiO2-NH2-MIP/MWCNTs/CPE, where GO is graphene oxide and MWCNTs is multi-walled carbon nanotubes) showed an improved performance in term of Nernstian slope, selectivity and response time compared to the unmodified CPE. The response time of the sensor in the range of 2.5 × 10-8-1.1 × 10-2 M DIP was 20 s. The obtained DIP sensor showed low limit of detection (1 × 10-8 M), and satisfactory long-term stability (higher than 4 months). The practical application of the sensor was demonstrated by the determination of DIP concentration in urine samples and pharmaceutical preparations, with good precision and acceptable recoveries (96.0-103.0%). The prepared sensor showed high selectivity for DIP over a number of common species (aspirin, caffeine, ascorbic acid, glucose, urea, bipyridine, Na+, Fe3+, Mg2+, Ca2+ and K+).
id SBQ-2_820797aa6362d6eb8e4581774cfccaa2
oai_identifier_str oai:scielo:S0103-50532019000901874
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Construction and Evaluation of a Graphene Oxide Functionalized Aminopropyltriethoxy Silane Surface Molecularly Imprinted Polymer Potentiometric Sensor for Dipyridamole Detection in Urine and Pharmaceutical Samplesdipyridamolepotentiometric sensorcarbon paste electrodegraphene oxideimprinted polymerA dipyridamole (DIP) based surface molecularly imprinted polymer (MIP) was synthesized and applied as a sensing agent in a sensing layer of a new modified potentiometric carbon paste electrode (CPE). The potentiometric modified CPEs (GO@SiO2-NH2-MIP/MWCNTs/CPE, where GO is graphene oxide and MWCNTs is multi-walled carbon nanotubes) showed an improved performance in term of Nernstian slope, selectivity and response time compared to the unmodified CPE. The response time of the sensor in the range of 2.5 × 10-8-1.1 × 10-2 M DIP was 20 s. The obtained DIP sensor showed low limit of detection (1 × 10-8 M), and satisfactory long-term stability (higher than 4 months). The practical application of the sensor was demonstrated by the determination of DIP concentration in urine samples and pharmaceutical preparations, with good precision and acceptable recoveries (96.0-103.0%). The prepared sensor showed high selectivity for DIP over a number of common species (aspirin, caffeine, ascorbic acid, glucose, urea, bipyridine, Na+, Fe3+, Mg2+, Ca2+ and K+).Sociedade Brasileira de Química2019-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019000901874Journal of the Brazilian Chemical Society v.30 n.9 2019reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0103-5053.20190097info:eu-repo/semantics/openAccessMirzajani,RoyaArefiyan,Ehsaneng2019-09-11T00:00:00Zoai:scielo:S0103-50532019000901874Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2019-09-11T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Construction and Evaluation of a Graphene Oxide Functionalized Aminopropyltriethoxy Silane Surface Molecularly Imprinted Polymer Potentiometric Sensor for Dipyridamole Detection in Urine and Pharmaceutical Samples
title Construction and Evaluation of a Graphene Oxide Functionalized Aminopropyltriethoxy Silane Surface Molecularly Imprinted Polymer Potentiometric Sensor for Dipyridamole Detection in Urine and Pharmaceutical Samples
spellingShingle Construction and Evaluation of a Graphene Oxide Functionalized Aminopropyltriethoxy Silane Surface Molecularly Imprinted Polymer Potentiometric Sensor for Dipyridamole Detection in Urine and Pharmaceutical Samples
Mirzajani,Roya
dipyridamole
potentiometric sensor
carbon paste electrode
graphene oxide
imprinted polymer
title_short Construction and Evaluation of a Graphene Oxide Functionalized Aminopropyltriethoxy Silane Surface Molecularly Imprinted Polymer Potentiometric Sensor for Dipyridamole Detection in Urine and Pharmaceutical Samples
title_full Construction and Evaluation of a Graphene Oxide Functionalized Aminopropyltriethoxy Silane Surface Molecularly Imprinted Polymer Potentiometric Sensor for Dipyridamole Detection in Urine and Pharmaceutical Samples
title_fullStr Construction and Evaluation of a Graphene Oxide Functionalized Aminopropyltriethoxy Silane Surface Molecularly Imprinted Polymer Potentiometric Sensor for Dipyridamole Detection in Urine and Pharmaceutical Samples
title_full_unstemmed Construction and Evaluation of a Graphene Oxide Functionalized Aminopropyltriethoxy Silane Surface Molecularly Imprinted Polymer Potentiometric Sensor for Dipyridamole Detection in Urine and Pharmaceutical Samples
title_sort Construction and Evaluation of a Graphene Oxide Functionalized Aminopropyltriethoxy Silane Surface Molecularly Imprinted Polymer Potentiometric Sensor for Dipyridamole Detection in Urine and Pharmaceutical Samples
author Mirzajani,Roya
author_facet Mirzajani,Roya
Arefiyan,Ehsan
author_role author
author2 Arefiyan,Ehsan
author2_role author
dc.contributor.author.fl_str_mv Mirzajani,Roya
Arefiyan,Ehsan
dc.subject.por.fl_str_mv dipyridamole
potentiometric sensor
carbon paste electrode
graphene oxide
imprinted polymer
topic dipyridamole
potentiometric sensor
carbon paste electrode
graphene oxide
imprinted polymer
description A dipyridamole (DIP) based surface molecularly imprinted polymer (MIP) was synthesized and applied as a sensing agent in a sensing layer of a new modified potentiometric carbon paste electrode (CPE). The potentiometric modified CPEs (GO@SiO2-NH2-MIP/MWCNTs/CPE, where GO is graphene oxide and MWCNTs is multi-walled carbon nanotubes) showed an improved performance in term of Nernstian slope, selectivity and response time compared to the unmodified CPE. The response time of the sensor in the range of 2.5 × 10-8-1.1 × 10-2 M DIP was 20 s. The obtained DIP sensor showed low limit of detection (1 × 10-8 M), and satisfactory long-term stability (higher than 4 months). The practical application of the sensor was demonstrated by the determination of DIP concentration in urine samples and pharmaceutical preparations, with good precision and acceptable recoveries (96.0-103.0%). The prepared sensor showed high selectivity for DIP over a number of common species (aspirin, caffeine, ascorbic acid, glucose, urea, bipyridine, Na+, Fe3+, Mg2+, Ca2+ and K+).
publishDate 2019
dc.date.none.fl_str_mv 2019-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019000901874
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019000901874
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.21577/0103-5053.20190097
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.30 n.9 2019
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318182134972416