Evaluation of a Graphite-Polyurethane Composite Electrode Modified with Copper Nanoparticles as an Amperometric Flow Detector in a Wall-Jet System for the Determination of Cysteine

Detalhes bibliográficos
Autor(a) principal: Mattioli,Isabela A.
Data de Publicação: 2020
Outros Autores: Schildt,Letícia F. L., Cervini,Priscila, Saciloto,Thalita R., Cavalheiro,Éder T. G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532020000200370
Resumo: A graphite-polyurethane composite electrode (GPUE) was modified by electrodeposition of copper nanoparticles (CuNP) followed by electrochemical treatment in NaOH (GPUE-CuNP), in order to prepare an amperometric sensor for the determination of cysteine (Cys). Cyclic votammograms of Cys solutions at GPUE-CuNP allowed the description of a sequence of electrochemical reactions involving Cys oxidation and Cu/Cu+ equilibrium, generating a stable Cys-Cu+ complex. The presence of these nanoparticles was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) data. Hence, the developed device was then used as a Cys amperometric flow detector in a wall-jet system, after evaluation of flow injection parameters in an undescribed approach. In this system, a limit of detection (LOD) of 4.24 µmol L-1 was obtained with an analytical frequency of 36 determinations h-1. Intra-day and inter-day reproducibility and repeatability of the modified surface was evaluated. Then the GPUE-CuNP performance was investigated in the determination of Cys content in food supplements. Interference tests were carried out with pyridoxine, ascorbic acid, tryptophan and SO4 2- ions. The main interference was attributed to the interaction of some of these substances with copper oxides.
id SBQ-2_b118a6577c8d36cc1332085fc1061bd0
oai_identifier_str oai:scielo:S0103-50532020000200370
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Evaluation of a Graphite-Polyurethane Composite Electrode Modified with Copper Nanoparticles as an Amperometric Flow Detector in a Wall-Jet System for the Determination of Cysteinegraphite-polyurethane electrodecopper nanoparticlescysteinewall-jetA graphite-polyurethane composite electrode (GPUE) was modified by electrodeposition of copper nanoparticles (CuNP) followed by electrochemical treatment in NaOH (GPUE-CuNP), in order to prepare an amperometric sensor for the determination of cysteine (Cys). Cyclic votammograms of Cys solutions at GPUE-CuNP allowed the description of a sequence of electrochemical reactions involving Cys oxidation and Cu/Cu+ equilibrium, generating a stable Cys-Cu+ complex. The presence of these nanoparticles was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) data. Hence, the developed device was then used as a Cys amperometric flow detector in a wall-jet system, after evaluation of flow injection parameters in an undescribed approach. In this system, a limit of detection (LOD) of 4.24 µmol L-1 was obtained with an analytical frequency of 36 determinations h-1. Intra-day and inter-day reproducibility and repeatability of the modified surface was evaluated. Then the GPUE-CuNP performance was investigated in the determination of Cys content in food supplements. Interference tests were carried out with pyridoxine, ascorbic acid, tryptophan and SO4 2- ions. The main interference was attributed to the interaction of some of these substances with copper oxides.Sociedade Brasileira de Química2020-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532020000200370Journal of the Brazilian Chemical Society v.31 n.2 2020reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0103-5053.20190191info:eu-repo/semantics/openAccessMattioli,Isabela A.Schildt,Letícia F. L.Cervini,PriscilaSaciloto,Thalita R.Cavalheiro,Éder T. G.eng2020-01-17T00:00:00Zoai:scielo:S0103-50532020000200370Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2020-01-17T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Evaluation of a Graphite-Polyurethane Composite Electrode Modified with Copper Nanoparticles as an Amperometric Flow Detector in a Wall-Jet System for the Determination of Cysteine
title Evaluation of a Graphite-Polyurethane Composite Electrode Modified with Copper Nanoparticles as an Amperometric Flow Detector in a Wall-Jet System for the Determination of Cysteine
spellingShingle Evaluation of a Graphite-Polyurethane Composite Electrode Modified with Copper Nanoparticles as an Amperometric Flow Detector in a Wall-Jet System for the Determination of Cysteine
Mattioli,Isabela A.
graphite-polyurethane electrode
copper nanoparticles
cysteine
wall-jet
title_short Evaluation of a Graphite-Polyurethane Composite Electrode Modified with Copper Nanoparticles as an Amperometric Flow Detector in a Wall-Jet System for the Determination of Cysteine
title_full Evaluation of a Graphite-Polyurethane Composite Electrode Modified with Copper Nanoparticles as an Amperometric Flow Detector in a Wall-Jet System for the Determination of Cysteine
title_fullStr Evaluation of a Graphite-Polyurethane Composite Electrode Modified with Copper Nanoparticles as an Amperometric Flow Detector in a Wall-Jet System for the Determination of Cysteine
title_full_unstemmed Evaluation of a Graphite-Polyurethane Composite Electrode Modified with Copper Nanoparticles as an Amperometric Flow Detector in a Wall-Jet System for the Determination of Cysteine
title_sort Evaluation of a Graphite-Polyurethane Composite Electrode Modified with Copper Nanoparticles as an Amperometric Flow Detector in a Wall-Jet System for the Determination of Cysteine
author Mattioli,Isabela A.
author_facet Mattioli,Isabela A.
Schildt,Letícia F. L.
Cervini,Priscila
Saciloto,Thalita R.
Cavalheiro,Éder T. G.
author_role author
author2 Schildt,Letícia F. L.
Cervini,Priscila
Saciloto,Thalita R.
Cavalheiro,Éder T. G.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Mattioli,Isabela A.
Schildt,Letícia F. L.
Cervini,Priscila
Saciloto,Thalita R.
Cavalheiro,Éder T. G.
dc.subject.por.fl_str_mv graphite-polyurethane electrode
copper nanoparticles
cysteine
wall-jet
topic graphite-polyurethane electrode
copper nanoparticles
cysteine
wall-jet
description A graphite-polyurethane composite electrode (GPUE) was modified by electrodeposition of copper nanoparticles (CuNP) followed by electrochemical treatment in NaOH (GPUE-CuNP), in order to prepare an amperometric sensor for the determination of cysteine (Cys). Cyclic votammograms of Cys solutions at GPUE-CuNP allowed the description of a sequence of electrochemical reactions involving Cys oxidation and Cu/Cu+ equilibrium, generating a stable Cys-Cu+ complex. The presence of these nanoparticles was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) data. Hence, the developed device was then used as a Cys amperometric flow detector in a wall-jet system, after evaluation of flow injection parameters in an undescribed approach. In this system, a limit of detection (LOD) of 4.24 µmol L-1 was obtained with an analytical frequency of 36 determinations h-1. Intra-day and inter-day reproducibility and repeatability of the modified surface was evaluated. Then the GPUE-CuNP performance was investigated in the determination of Cys content in food supplements. Interference tests were carried out with pyridoxine, ascorbic acid, tryptophan and SO4 2- ions. The main interference was attributed to the interaction of some of these substances with copper oxides.
publishDate 2020
dc.date.none.fl_str_mv 2020-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532020000200370
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532020000200370
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.21577/0103-5053.20190191
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.31 n.2 2020
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318182617317376