Multivariate calibration transfer employing variable selection and subagging

Detalhes bibliográficos
Autor(a) principal: Martins,Marcelo N.
Data de Publicação: 2010
Outros Autores: Galvão,Roberto K. H., Pimentel,Maria Fernanda
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532010000100019
Resumo: This paper proposes a new technique for calibration transfer, which combines the Successive Projections Algorithm (SPA) for robust variable selection with the subsampling and model aggregation technique known as subagging. The proposed technique is aimed at building Multiple Linear Regression (MLR) models that are robust with respect to differences in the instrumental response of two spectrometers (primary and secondary). For this purpose, a small set of transfer samples with spectra acquired at the secondary instrument is employed to guide the variable selection procedure. The efficiency of the proposed technique is demonstrated in a case study concerning the FT-IR determination of specific mass and two distillation temperatures (T10%, T90%) for gasoline samples and the NIR determination of moisture in corn samples. In terms of the root-mean-square error of prediction at the secondary spectrometer, the MLR models obtained according to the SPA-subagging approach provided better results in comparison with Partial Least Squares employing Piecewise Direct Standardization. In particular, the use of subagging resulted in a more systematic reduction in the prediction error with the progressive inclusion of transfer samples.
id SBQ-2_c4e2a47203acbe2319d2c7a08a939911
oai_identifier_str oai:scielo:S0103-50532010000100019
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Multivariate calibration transfer employing variable selection and subaggingmultivariate calibrationcalibration transfervariable selectionsuccessive projections algorithmsubaggingThis paper proposes a new technique for calibration transfer, which combines the Successive Projections Algorithm (SPA) for robust variable selection with the subsampling and model aggregation technique known as subagging. The proposed technique is aimed at building Multiple Linear Regression (MLR) models that are robust with respect to differences in the instrumental response of two spectrometers (primary and secondary). For this purpose, a small set of transfer samples with spectra acquired at the secondary instrument is employed to guide the variable selection procedure. The efficiency of the proposed technique is demonstrated in a case study concerning the FT-IR determination of specific mass and two distillation temperatures (T10%, T90%) for gasoline samples and the NIR determination of moisture in corn samples. In terms of the root-mean-square error of prediction at the secondary spectrometer, the MLR models obtained according to the SPA-subagging approach provided better results in comparison with Partial Least Squares employing Piecewise Direct Standardization. In particular, the use of subagging resulted in a more systematic reduction in the prediction error with the progressive inclusion of transfer samples.Sociedade Brasileira de Química2010-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532010000100019Journal of the Brazilian Chemical Society v.21 n.1 2010reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0103-50532010000100019info:eu-repo/semantics/openAccessMartins,Marcelo N.Galvão,Roberto K. H.Pimentel,Maria Fernandaeng2010-02-18T00:00:00Zoai:scielo:S0103-50532010000100019Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2010-02-18T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Multivariate calibration transfer employing variable selection and subagging
title Multivariate calibration transfer employing variable selection and subagging
spellingShingle Multivariate calibration transfer employing variable selection and subagging
Martins,Marcelo N.
multivariate calibration
calibration transfer
variable selection
successive projections algorithm
subagging
title_short Multivariate calibration transfer employing variable selection and subagging
title_full Multivariate calibration transfer employing variable selection and subagging
title_fullStr Multivariate calibration transfer employing variable selection and subagging
title_full_unstemmed Multivariate calibration transfer employing variable selection and subagging
title_sort Multivariate calibration transfer employing variable selection and subagging
author Martins,Marcelo N.
author_facet Martins,Marcelo N.
Galvão,Roberto K. H.
Pimentel,Maria Fernanda
author_role author
author2 Galvão,Roberto K. H.
Pimentel,Maria Fernanda
author2_role author
author
dc.contributor.author.fl_str_mv Martins,Marcelo N.
Galvão,Roberto K. H.
Pimentel,Maria Fernanda
dc.subject.por.fl_str_mv multivariate calibration
calibration transfer
variable selection
successive projections algorithm
subagging
topic multivariate calibration
calibration transfer
variable selection
successive projections algorithm
subagging
description This paper proposes a new technique for calibration transfer, which combines the Successive Projections Algorithm (SPA) for robust variable selection with the subsampling and model aggregation technique known as subagging. The proposed technique is aimed at building Multiple Linear Regression (MLR) models that are robust with respect to differences in the instrumental response of two spectrometers (primary and secondary). For this purpose, a small set of transfer samples with spectra acquired at the secondary instrument is employed to guide the variable selection procedure. The efficiency of the proposed technique is demonstrated in a case study concerning the FT-IR determination of specific mass and two distillation temperatures (T10%, T90%) for gasoline samples and the NIR determination of moisture in corn samples. In terms of the root-mean-square error of prediction at the secondary spectrometer, the MLR models obtained according to the SPA-subagging approach provided better results in comparison with Partial Least Squares employing Piecewise Direct Standardization. In particular, the use of subagging resulted in a more systematic reduction in the prediction error with the progressive inclusion of transfer samples.
publishDate 2010
dc.date.none.fl_str_mv 2010-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532010000100019
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532010000100019
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-50532010000100019
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.21 n.1 2010
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318170606927872