REGRESSÃO MULTIVARIADA POR OPLS E PLS DOS ESPECTROS DE RMN DE 1H DE MISTURAS DIESEL/BIODIESEL DE MAFURRA PARA ESTIMATIVA DO TEOR DE BIODIESEL
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Química Nova (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422020000700863 |
Resumo: | Two methodologies were developed to monitor the biodiesel content of mafurra in mixtures with diesel using hydrogen nuclear magnetic resonance (1H NMR) Spectroscopy combined with the multivariate regression by orthogonal projections to latent structure (OPLS) and partial least squares (PLS). The efficiency of these methodologies was analyzed based on the figures of merit and the fit of the models through the correlation of the measured and predicted values of the calibration and prediction sets. The results of the figures of merit in the OPLS model were better than in the PLS model. A high correlation between the measured and predicted values was evident in the OPLS model, with a correlation coefficient (R2) greater than 0.99, demonstrating a better fit of the OPLS model in relation to the PLS model which presented a correlation coefficient (R2) less than 0.98. The OPLS model is more robust and has good predictive capacity than the PLS model because it obtained a higher Q 2 value. The excellent results of the application of 1H NMR spectroscopy combined with multivariate regression by OPLS suggest that this analytical methodology is ideal, feasible, efficient and suitable for use by inspection agencies to control the quality of this fuel. |
id |
SBQ-3_469b55376f3aca3f6161d15e8322f569 |
---|---|
oai_identifier_str |
oai:scielo:S0100-40422020000700863 |
network_acronym_str |
SBQ-3 |
network_name_str |
Química Nova (Online) |
repository_id_str |
|
spelling |
REGRESSÃO MULTIVARIADA POR OPLS E PLS DOS ESPECTROS DE RMN DE 1H DE MISTURAS DIESEL/BIODIESEL DE MAFURRA PARA ESTIMATIVA DO TEOR DE BIODIESELmafurra Biodiesel1H NMR spectrometryMonitoringOPLSPLSTwo methodologies were developed to monitor the biodiesel content of mafurra in mixtures with diesel using hydrogen nuclear magnetic resonance (1H NMR) Spectroscopy combined with the multivariate regression by orthogonal projections to latent structure (OPLS) and partial least squares (PLS). The efficiency of these methodologies was analyzed based on the figures of merit and the fit of the models through the correlation of the measured and predicted values of the calibration and prediction sets. The results of the figures of merit in the OPLS model were better than in the PLS model. A high correlation between the measured and predicted values was evident in the OPLS model, with a correlation coefficient (R2) greater than 0.99, demonstrating a better fit of the OPLS model in relation to the PLS model which presented a correlation coefficient (R2) less than 0.98. The OPLS model is more robust and has good predictive capacity than the PLS model because it obtained a higher Q 2 value. The excellent results of the application of 1H NMR spectroscopy combined with multivariate regression by OPLS suggest that this analytical methodology is ideal, feasible, efficient and suitable for use by inspection agencies to control the quality of this fuel.Sociedade Brasileira de Química2020-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422020000700863Química Nova v.43 n.7 2020reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0100-4042.20170559info:eu-repo/semantics/openAccessMáquina,Ademar D. V.Sitoe,Baltazar V.Ferreira,Maria T. C.Santos,Douglas Q.Borges Neto,Waldomiropor2020-08-18T00:00:00Zoai:scielo:S0100-40422020000700863Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2020-08-18T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
REGRESSÃO MULTIVARIADA POR OPLS E PLS DOS ESPECTROS DE RMN DE 1H DE MISTURAS DIESEL/BIODIESEL DE MAFURRA PARA ESTIMATIVA DO TEOR DE BIODIESEL |
title |
REGRESSÃO MULTIVARIADA POR OPLS E PLS DOS ESPECTROS DE RMN DE 1H DE MISTURAS DIESEL/BIODIESEL DE MAFURRA PARA ESTIMATIVA DO TEOR DE BIODIESEL |
spellingShingle |
REGRESSÃO MULTIVARIADA POR OPLS E PLS DOS ESPECTROS DE RMN DE 1H DE MISTURAS DIESEL/BIODIESEL DE MAFURRA PARA ESTIMATIVA DO TEOR DE BIODIESEL Máquina,Ademar D. V. mafurra Biodiesel 1H NMR spectrometry Monitoring OPLS PLS |
title_short |
REGRESSÃO MULTIVARIADA POR OPLS E PLS DOS ESPECTROS DE RMN DE 1H DE MISTURAS DIESEL/BIODIESEL DE MAFURRA PARA ESTIMATIVA DO TEOR DE BIODIESEL |
title_full |
REGRESSÃO MULTIVARIADA POR OPLS E PLS DOS ESPECTROS DE RMN DE 1H DE MISTURAS DIESEL/BIODIESEL DE MAFURRA PARA ESTIMATIVA DO TEOR DE BIODIESEL |
title_fullStr |
REGRESSÃO MULTIVARIADA POR OPLS E PLS DOS ESPECTROS DE RMN DE 1H DE MISTURAS DIESEL/BIODIESEL DE MAFURRA PARA ESTIMATIVA DO TEOR DE BIODIESEL |
title_full_unstemmed |
REGRESSÃO MULTIVARIADA POR OPLS E PLS DOS ESPECTROS DE RMN DE 1H DE MISTURAS DIESEL/BIODIESEL DE MAFURRA PARA ESTIMATIVA DO TEOR DE BIODIESEL |
title_sort |
REGRESSÃO MULTIVARIADA POR OPLS E PLS DOS ESPECTROS DE RMN DE 1H DE MISTURAS DIESEL/BIODIESEL DE MAFURRA PARA ESTIMATIVA DO TEOR DE BIODIESEL |
author |
Máquina,Ademar D. V. |
author_facet |
Máquina,Ademar D. V. Sitoe,Baltazar V. Ferreira,Maria T. C. Santos,Douglas Q. Borges Neto,Waldomiro |
author_role |
author |
author2 |
Sitoe,Baltazar V. Ferreira,Maria T. C. Santos,Douglas Q. Borges Neto,Waldomiro |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Máquina,Ademar D. V. Sitoe,Baltazar V. Ferreira,Maria T. C. Santos,Douglas Q. Borges Neto,Waldomiro |
dc.subject.por.fl_str_mv |
mafurra Biodiesel 1H NMR spectrometry Monitoring OPLS PLS |
topic |
mafurra Biodiesel 1H NMR spectrometry Monitoring OPLS PLS |
description |
Two methodologies were developed to monitor the biodiesel content of mafurra in mixtures with diesel using hydrogen nuclear magnetic resonance (1H NMR) Spectroscopy combined with the multivariate regression by orthogonal projections to latent structure (OPLS) and partial least squares (PLS). The efficiency of these methodologies was analyzed based on the figures of merit and the fit of the models through the correlation of the measured and predicted values of the calibration and prediction sets. The results of the figures of merit in the OPLS model were better than in the PLS model. A high correlation between the measured and predicted values was evident in the OPLS model, with a correlation coefficient (R2) greater than 0.99, demonstrating a better fit of the OPLS model in relation to the PLS model which presented a correlation coefficient (R2) less than 0.98. The OPLS model is more robust and has good predictive capacity than the PLS model because it obtained a higher Q 2 value. The excellent results of the application of 1H NMR spectroscopy combined with multivariate regression by OPLS suggest that this analytical methodology is ideal, feasible, efficient and suitable for use by inspection agencies to control the quality of this fuel. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422020000700863 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422020000700863 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.21577/0100-4042.20170559 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Química Nova v.43 n.7 2020 reponame:Química Nova (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Química Nova (Online) |
collection |
Química Nova (Online) |
repository.name.fl_str_mv |
Química Nova (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
quimicanova@sbq.org.br |
_version_ |
1750318120559443968 |