Estudo do estado fundamental de aglomerados de silício via redes neurais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Química Nova (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422002000400005 |
Resumo: | We introduce a global optimization method based on the cooperation between an Artificial Neural Net (ANN) and Genetic Algorithm (GA). We have used ANN to select the initial population for the GA. We have tested the new method to predict the ground-state geometry of silicon clusters. We have described the clusters as a piling of plane structures. We have trained three ANN architectures and compared their results with those of pure GA. ANN strongly reduces the total computational time. For Si10, it gained a factor of 5 in search speed. This method can be easily extended to other optimization problems. |
id |
SBQ-3_668b07bfc39a652a3a080f58d37d4ff0 |
---|---|
oai_identifier_str |
oai:scielo:S0100-40422002000400005 |
network_acronym_str |
SBQ-3 |
network_name_str |
Química Nova (Online) |
repository_id_str |
|
spelling |
Estudo do estado fundamental de aglomerados de silício via redes neuraissilicon clustersgenetic algoritmneural networkWe introduce a global optimization method based on the cooperation between an Artificial Neural Net (ANN) and Genetic Algorithm (GA). We have used ANN to select the initial population for the GA. We have tested the new method to predict the ground-state geometry of silicon clusters. We have described the clusters as a piling of plane structures. We have trained three ANN architectures and compared their results with those of pure GA. ANN strongly reduces the total computational time. For Si10, it gained a factor of 5 in search speed. This method can be easily extended to other optimization problems.Sociedade Brasileira de Química2002-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422002000400005Química Nova v.25 n.4 2002reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0100-40422002000400005info:eu-repo/semantics/openAccessLemes,Maurício RuvDal Pino Júnior,Arnaldopor2002-08-26T00:00:00Zoai:scielo:S0100-40422002000400005Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2002-08-26T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
Estudo do estado fundamental de aglomerados de silício via redes neurais |
title |
Estudo do estado fundamental de aglomerados de silício via redes neurais |
spellingShingle |
Estudo do estado fundamental de aglomerados de silício via redes neurais Lemes,Maurício Ruv silicon clusters genetic algoritm neural network |
title_short |
Estudo do estado fundamental de aglomerados de silício via redes neurais |
title_full |
Estudo do estado fundamental de aglomerados de silício via redes neurais |
title_fullStr |
Estudo do estado fundamental de aglomerados de silício via redes neurais |
title_full_unstemmed |
Estudo do estado fundamental de aglomerados de silício via redes neurais |
title_sort |
Estudo do estado fundamental de aglomerados de silício via redes neurais |
author |
Lemes,Maurício Ruv |
author_facet |
Lemes,Maurício Ruv Dal Pino Júnior,Arnaldo |
author_role |
author |
author2 |
Dal Pino Júnior,Arnaldo |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Lemes,Maurício Ruv Dal Pino Júnior,Arnaldo |
dc.subject.por.fl_str_mv |
silicon clusters genetic algoritm neural network |
topic |
silicon clusters genetic algoritm neural network |
description |
We introduce a global optimization method based on the cooperation between an Artificial Neural Net (ANN) and Genetic Algorithm (GA). We have used ANN to select the initial population for the GA. We have tested the new method to predict the ground-state geometry of silicon clusters. We have described the clusters as a piling of plane structures. We have trained three ANN architectures and compared their results with those of pure GA. ANN strongly reduces the total computational time. For Si10, it gained a factor of 5 in search speed. This method can be easily extended to other optimization problems. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-07-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422002000400005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422002000400005 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.1590/S0100-40422002000400005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Química Nova v.25 n.4 2002 reponame:Química Nova (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Química Nova (Online) |
collection |
Química Nova (Online) |
repository.name.fl_str_mv |
Química Nova (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
quimicanova@sbq.org.br |
_version_ |
1750318102699048960 |