Least squares regression with errors in both variables: case studies

Detalhes bibliográficos
Autor(a) principal: Oliveira,Elcio Cruz de
Data de Publicação: 2013
Outros Autores: Aguiar,Paula Fernandes de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Química Nova (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422013000600025
Resumo: Analytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant.
id SBQ-3_e82975d4d3a62d3f69f3cab666af3245
oai_identifier_str oai:scielo:S0100-40422013000600025
network_acronym_str SBQ-3
network_name_str Química Nova (Online)
repository_id_str
spelling Least squares regression with errors in both variables: case studiesorthogonal distance regressionleast squares regressionerror in x and y variablesAnalytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant.Sociedade Brasileira de Química2013-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422013000600025Química Nova v.36 n.6 2013reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0100-40422013000600025info:eu-repo/semantics/openAccessOliveira,Elcio Cruz deAguiar,Paula Fernandes deeng2013-08-08T00:00:00Zoai:scielo:S0100-40422013000600025Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2013-08-08T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Least squares regression with errors in both variables: case studies
title Least squares regression with errors in both variables: case studies
spellingShingle Least squares regression with errors in both variables: case studies
Oliveira,Elcio Cruz de
orthogonal distance regression
least squares regression
error in x and y variables
title_short Least squares regression with errors in both variables: case studies
title_full Least squares regression with errors in both variables: case studies
title_fullStr Least squares regression with errors in both variables: case studies
title_full_unstemmed Least squares regression with errors in both variables: case studies
title_sort Least squares regression with errors in both variables: case studies
author Oliveira,Elcio Cruz de
author_facet Oliveira,Elcio Cruz de
Aguiar,Paula Fernandes de
author_role author
author2 Aguiar,Paula Fernandes de
author2_role author
dc.contributor.author.fl_str_mv Oliveira,Elcio Cruz de
Aguiar,Paula Fernandes de
dc.subject.por.fl_str_mv orthogonal distance regression
least squares regression
error in x and y variables
topic orthogonal distance regression
least squares regression
error in x and y variables
description Analytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422013000600025
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422013000600025
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-40422013000600025
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Química Nova v.36 n.6 2013
reponame:Química Nova (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Química Nova (Online)
collection Química Nova (Online)
repository.name.fl_str_mv Química Nova (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv quimicanova@sbq.org.br
_version_ 1750318115053371392