Least squares regression with errors in both variables: case studies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Química Nova (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422013000600025 |
Resumo: | Analytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant. |
id |
SBQ-3_e82975d4d3a62d3f69f3cab666af3245 |
---|---|
oai_identifier_str |
oai:scielo:S0100-40422013000600025 |
network_acronym_str |
SBQ-3 |
network_name_str |
Química Nova (Online) |
repository_id_str |
|
spelling |
Least squares regression with errors in both variables: case studiesorthogonal distance regressionleast squares regressionerror in x and y variablesAnalytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant.Sociedade Brasileira de Química2013-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422013000600025Química Nova v.36 n.6 2013reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0100-40422013000600025info:eu-repo/semantics/openAccessOliveira,Elcio Cruz deAguiar,Paula Fernandes deeng2013-08-08T00:00:00Zoai:scielo:S0100-40422013000600025Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2013-08-08T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
Least squares regression with errors in both variables: case studies |
title |
Least squares regression with errors in both variables: case studies |
spellingShingle |
Least squares regression with errors in both variables: case studies Oliveira,Elcio Cruz de orthogonal distance regression least squares regression error in x and y variables |
title_short |
Least squares regression with errors in both variables: case studies |
title_full |
Least squares regression with errors in both variables: case studies |
title_fullStr |
Least squares regression with errors in both variables: case studies |
title_full_unstemmed |
Least squares regression with errors in both variables: case studies |
title_sort |
Least squares regression with errors in both variables: case studies |
author |
Oliveira,Elcio Cruz de |
author_facet |
Oliveira,Elcio Cruz de Aguiar,Paula Fernandes de |
author_role |
author |
author2 |
Aguiar,Paula Fernandes de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Oliveira,Elcio Cruz de Aguiar,Paula Fernandes de |
dc.subject.por.fl_str_mv |
orthogonal distance regression least squares regression error in x and y variables |
topic |
orthogonal distance regression least squares regression error in x and y variables |
description |
Analytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422013000600025 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422013000600025 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0100-40422013000600025 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Química Nova v.36 n.6 2013 reponame:Química Nova (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Química Nova (Online) |
collection |
Química Nova (Online) |
repository.name.fl_str_mv |
Química Nova (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
quimicanova@sbq.org.br |
_version_ |
1750318115053371392 |