Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis (Atheriniformes)

Detalhes bibliográficos
Autor(a) principal: Arranz,S.E.
Data de Publicação: 2008
Outros Autores: Sciara,A. A., Botta,P., Cerutti,P., Tobin,M., Somoza,G.M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Zootecnia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982008001300001
Resumo: Using biotechnology to increase the growth rates of fish is likely to reduce production costs per unit of food. Among vertebrates, fish appear to occupy a unique position, when growth patterns are considered. With few exceptions, fish species tend to grow indeterminately, implying that size is never fixed. Both hyperplasia and hypertrophy contribute to post-larval muscle growth in fish. Growth hormone (GH) - Insulin-like Growth Factor I (IGF-I) is the most important growth axis in fish. Our experimental model, the pejerrey, Odontesthes bonariensis (Ateriniformes) is a South American inland water fish considered to be a promising species for intensive aquaculture. However, one major drawback to achieve this goal is its slow growth in captivity. In order to understand how growth is regulated in this species, our first objective was to characterized pejerrey GH- IGF-I axis. We first cloned and characterized pejerrey (pj) GH, IGF-I and the growth hormone receptors (GHRs) I and II. In addition to providing valuable data for evolutionary comparison of GH, investigation of GH action in teleosts is particularly important because of its potential application in aquaculture. GH can not only promote the somatic growth in fish but also lower dietary protein requirements. A prerequisite for providing sufficient amounts of GH for basic research and aquaculture application is a large-scale production of GH. For that purpose, recombinant pjGH was expressed in a bacterial system. Protocols for solubilization and proper folding were achieved. Activity of recombinant pjGH was assessed in fish by measuring the liver IGF-I response to different doses of GH. IGF-I transcript was measured in the liver after pjGHr in vivo stimulation by means of quantitative real-time PCR assays. A dose-dependent response of IGF-I mRNA was observed after pjGHr administration, and reached a 6 fold IGF-I maximum increase over control group when 2.5 µg pjGH /g-body weight were injected. Temporal analysis of hepatic IGF-I mRNA levels showed that administration of a single dose of pjGHr into juvenile pejerrey resulted in a significant increase (P<0.02) 9 hours post injection. These results demonstrates that recombinant pjGH could promote a dramatic response in liver, increasing the IGF-I mRNA level. We also study the effect of GH on muscle growth after oral administration. A significant association between GH doses and mean fiber area (MFA) was observed even with a caloric restrictive diet. MFA increased 3.7 µm² per each unit of GH supplied indicating that GH promoted white muscle hypertrophy. These preliminary data indicates that GH could be absorbed by the intestine in an active form and promote somatic growth.
id SBZ-1_c523e5f438c95847a710e4c2aaa37a3f
oai_identifier_str oai:scielo:S1516-35982008001300001
network_acronym_str SBZ-1
network_name_str Revista Brasileira de Zootecnia (Online)
repository_id_str
spelling Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis (Atheriniformes)growthgrowth hormonemuscle hypertrophyoral administrationrecombinant proteinUsing biotechnology to increase the growth rates of fish is likely to reduce production costs per unit of food. Among vertebrates, fish appear to occupy a unique position, when growth patterns are considered. With few exceptions, fish species tend to grow indeterminately, implying that size is never fixed. Both hyperplasia and hypertrophy contribute to post-larval muscle growth in fish. Growth hormone (GH) - Insulin-like Growth Factor I (IGF-I) is the most important growth axis in fish. Our experimental model, the pejerrey, Odontesthes bonariensis (Ateriniformes) is a South American inland water fish considered to be a promising species for intensive aquaculture. However, one major drawback to achieve this goal is its slow growth in captivity. In order to understand how growth is regulated in this species, our first objective was to characterized pejerrey GH- IGF-I axis. We first cloned and characterized pejerrey (pj) GH, IGF-I and the growth hormone receptors (GHRs) I and II. In addition to providing valuable data for evolutionary comparison of GH, investigation of GH action in teleosts is particularly important because of its potential application in aquaculture. GH can not only promote the somatic growth in fish but also lower dietary protein requirements. A prerequisite for providing sufficient amounts of GH for basic research and aquaculture application is a large-scale production of GH. For that purpose, recombinant pjGH was expressed in a bacterial system. Protocols for solubilization and proper folding were achieved. Activity of recombinant pjGH was assessed in fish by measuring the liver IGF-I response to different doses of GH. IGF-I transcript was measured in the liver after pjGHr in vivo stimulation by means of quantitative real-time PCR assays. A dose-dependent response of IGF-I mRNA was observed after pjGHr administration, and reached a 6 fold IGF-I maximum increase over control group when 2.5 µg pjGH /g-body weight were injected. Temporal analysis of hepatic IGF-I mRNA levels showed that administration of a single dose of pjGHr into juvenile pejerrey resulted in a significant increase (P<0.02) 9 hours post injection. These results demonstrates that recombinant pjGH could promote a dramatic response in liver, increasing the IGF-I mRNA level. We also study the effect of GH on muscle growth after oral administration. A significant association between GH doses and mean fiber area (MFA) was observed even with a caloric restrictive diet. MFA increased 3.7 µm² per each unit of GH supplied indicating that GH promoted white muscle hypertrophy. These preliminary data indicates that GH could be absorbed by the intestine in an active form and promote somatic growth.Sociedade Brasileira de Zootecnia2008-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982008001300001Revista Brasileira de Zootecnia v.37 n.spe 2008reponame:Revista Brasileira de Zootecnia (Online)instname:Sociedade Brasileira de Zootecnia (SBZ)instacron:SBZ10.1590/S1516-35982008001300001info:eu-repo/semantics/openAccessArranz,S.E.Sciara,A. A.Botta,P.Cerutti,P.Tobin,M.Somoza,G.M.eng2009-06-10T00:00:00Zoai:scielo:S1516-35982008001300001Revistahttps://www.rbz.org.br/pt-br/https://old.scielo.br/oai/scielo-oai.php||bz@sbz.org.br|| secretariarbz@sbz.org.br1806-92901516-3598opendoar:2009-06-10T00:00Revista Brasileira de Zootecnia (Online) - Sociedade Brasileira de Zootecnia (SBZ)false
dc.title.none.fl_str_mv Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis (Atheriniformes)
title Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis (Atheriniformes)
spellingShingle Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis (Atheriniformes)
Arranz,S.E.
growth
growth hormone
muscle hypertrophy
oral administration
recombinant protein
title_short Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis (Atheriniformes)
title_full Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis (Atheriniformes)
title_fullStr Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis (Atheriniformes)
title_full_unstemmed Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis (Atheriniformes)
title_sort Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis (Atheriniformes)
author Arranz,S.E.
author_facet Arranz,S.E.
Sciara,A. A.
Botta,P.
Cerutti,P.
Tobin,M.
Somoza,G.M.
author_role author
author2 Sciara,A. A.
Botta,P.
Cerutti,P.
Tobin,M.
Somoza,G.M.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Arranz,S.E.
Sciara,A. A.
Botta,P.
Cerutti,P.
Tobin,M.
Somoza,G.M.
dc.subject.por.fl_str_mv growth
growth hormone
muscle hypertrophy
oral administration
recombinant protein
topic growth
growth hormone
muscle hypertrophy
oral administration
recombinant protein
description Using biotechnology to increase the growth rates of fish is likely to reduce production costs per unit of food. Among vertebrates, fish appear to occupy a unique position, when growth patterns are considered. With few exceptions, fish species tend to grow indeterminately, implying that size is never fixed. Both hyperplasia and hypertrophy contribute to post-larval muscle growth in fish. Growth hormone (GH) - Insulin-like Growth Factor I (IGF-I) is the most important growth axis in fish. Our experimental model, the pejerrey, Odontesthes bonariensis (Ateriniformes) is a South American inland water fish considered to be a promising species for intensive aquaculture. However, one major drawback to achieve this goal is its slow growth in captivity. In order to understand how growth is regulated in this species, our first objective was to characterized pejerrey GH- IGF-I axis. We first cloned and characterized pejerrey (pj) GH, IGF-I and the growth hormone receptors (GHRs) I and II. In addition to providing valuable data for evolutionary comparison of GH, investigation of GH action in teleosts is particularly important because of its potential application in aquaculture. GH can not only promote the somatic growth in fish but also lower dietary protein requirements. A prerequisite for providing sufficient amounts of GH for basic research and aquaculture application is a large-scale production of GH. For that purpose, recombinant pjGH was expressed in a bacterial system. Protocols for solubilization and proper folding were achieved. Activity of recombinant pjGH was assessed in fish by measuring the liver IGF-I response to different doses of GH. IGF-I transcript was measured in the liver after pjGHr in vivo stimulation by means of quantitative real-time PCR assays. A dose-dependent response of IGF-I mRNA was observed after pjGHr administration, and reached a 6 fold IGF-I maximum increase over control group when 2.5 µg pjGH /g-body weight were injected. Temporal analysis of hepatic IGF-I mRNA levels showed that administration of a single dose of pjGHr into juvenile pejerrey resulted in a significant increase (P<0.02) 9 hours post injection. These results demonstrates that recombinant pjGH could promote a dramatic response in liver, increasing the IGF-I mRNA level. We also study the effect of GH on muscle growth after oral administration. A significant association between GH doses and mean fiber area (MFA) was observed even with a caloric restrictive diet. MFA increased 3.7 µm² per each unit of GH supplied indicating that GH promoted white muscle hypertrophy. These preliminary data indicates that GH could be absorbed by the intestine in an active form and promote somatic growth.
publishDate 2008
dc.date.none.fl_str_mv 2008-07-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982008001300001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982008001300001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1516-35982008001300001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Zootecnia
publisher.none.fl_str_mv Sociedade Brasileira de Zootecnia
dc.source.none.fl_str_mv Revista Brasileira de Zootecnia v.37 n.spe 2008
reponame:Revista Brasileira de Zootecnia (Online)
instname:Sociedade Brasileira de Zootecnia (SBZ)
instacron:SBZ
instname_str Sociedade Brasileira de Zootecnia (SBZ)
instacron_str SBZ
institution SBZ
reponame_str Revista Brasileira de Zootecnia (Online)
collection Revista Brasileira de Zootecnia (Online)
repository.name.fl_str_mv Revista Brasileira de Zootecnia (Online) - Sociedade Brasileira de Zootecnia (SBZ)
repository.mail.fl_str_mv ||bz@sbz.org.br|| secretariarbz@sbz.org.br
_version_ 1750318143440420864