Alternative regression models to beta distribution under bayesian approach

Detalhes bibliográficos
Autor(a) principal: Paz, Rosineide Fernando da
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/9146
Resumo: The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models.
id SCAR_08bc5f2f30d91d88682e374cdbd32457
oai_identifier_str oai:repositorio.ufscar.br:ufscar/9146
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Paz, Rosineide Fernando daBazán Guzmán, Jorge Luishttp://lattes.cnpq.br/7302778157579178http://lattes.cnpq.br/0773010734982168d170d2a5-5293-4320-89de-df50acf381f02017-10-10T18:23:04Z2017-10-10T18:23:04Z2017-08-25PAZ, Rosineide Fernando da. Alternative regression models to beta distribution under bayesian approach. 2017. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9146.https://repositorio.ufscar.br/handle/ufscar/9146The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models.A distribuição beta é uma distribuição com suporte limitado que tem dominado a modelagem de variáveis aleatórias que assumem valores entre 0 e 1. Distribuições com suporte limitado surgem em várias situações como em taxas, proporções e índices. Motivados por uma análise de porcentagens de votos eleitorais, em que foi assumida uma distribuição com suporte nos números reais positivos quando uma distribuição com suporte limitado seira mais apropriada, focamos em modelos alternativos a distribuição beta com enfase em modelos de regressão. Neste trabalho, apresentamos, inicialmente, um modelo de mistura de distribuições Simplex como um modelo flexível para modelar a distribuição de variáveis aleatórias que assumem valores em um intervalo limitado, em seguida estendemos o modelo para o contexto de modelos de regressão com a inclusão de covariáveis. A estimação dos parâmetros foi discutida para ambos os modelos, considerando o método bayesiano. Aplicamos os dois modelos a dados simulados para investigarmos a performance dos estimadores usados. Os resultados obtidos foram satisfatórios para todos os casos investigados. Finalmente, introduzimos a distribuição L-Logistica no contexto de modelos de regressão e posteriormente estendemos este modelo para o contexto de misturas de modelos de regressão mista.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarDistribuição L-LogisticaResposta limitadaModelo de misturaDistribuição SimplexInferência bayesianaDistribuição betaL-Logistic distributionBounded responseMixture modelSimplex distributionBayesian inferenceBeta distributionCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAAlternative regression models to beta distribution under bayesian approachModelos de regressão alternativos à distribuição beta sob abordagem bayesianainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600712d7773-fe6a-4a4f-a2f1-42684ef30b44info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseRFP.pdfTeseRFP.pdfapplication/pdf2142415https://repositorio.ufscar.br/bitstream/ufscar/9146/1/TeseRFP.pdf8dcd8615da0b442e9f1b52f35364715bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9146/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseRFP.pdf.txtTeseRFP.pdf.txtExtracted texttext/plain221048https://repositorio.ufscar.br/bitstream/ufscar/9146/3/TeseRFP.pdf.txt8314047e0a0da7d7c4d1edc4329d1539MD53THUMBNAILTeseRFP.pdf.jpgTeseRFP.pdf.jpgIM Thumbnailimage/jpeg4596https://repositorio.ufscar.br/bitstream/ufscar/9146/4/TeseRFP.pdf.jpg0b7a08115d6fe686602c32ee69dd6954MD54ufscar/91462023-09-18 18:31:20.599oai:repositorio.ufscar.br:ufscar/9146TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:20Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Alternative regression models to beta distribution under bayesian approach
dc.title.alternative.por.fl_str_mv Modelos de regressão alternativos à distribuição beta sob abordagem bayesiana
title Alternative regression models to beta distribution under bayesian approach
spellingShingle Alternative regression models to beta distribution under bayesian approach
Paz, Rosineide Fernando da
Distribuição L-Logistica
Resposta limitada
Modelo de mistura
Distribuição Simplex
Inferência bayesiana
Distribuição beta
L-Logistic distribution
Bounded response
Mixture model
Simplex distribution
Bayesian inference
Beta distribution
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Alternative regression models to beta distribution under bayesian approach
title_full Alternative regression models to beta distribution under bayesian approach
title_fullStr Alternative regression models to beta distribution under bayesian approach
title_full_unstemmed Alternative regression models to beta distribution under bayesian approach
title_sort Alternative regression models to beta distribution under bayesian approach
author Paz, Rosineide Fernando da
author_facet Paz, Rosineide Fernando da
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/0773010734982168
dc.contributor.author.fl_str_mv Paz, Rosineide Fernando da
dc.contributor.advisor1.fl_str_mv Bazán Guzmán, Jorge Luis
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7302778157579178
dc.contributor.authorID.fl_str_mv d170d2a5-5293-4320-89de-df50acf381f0
contributor_str_mv Bazán Guzmán, Jorge Luis
dc.subject.por.fl_str_mv Distribuição L-Logistica
Resposta limitada
Modelo de mistura
Distribuição Simplex
Inferência bayesiana
Distribuição beta
topic Distribuição L-Logistica
Resposta limitada
Modelo de mistura
Distribuição Simplex
Inferência bayesiana
Distribuição beta
L-Logistic distribution
Bounded response
Mixture model
Simplex distribution
Bayesian inference
Beta distribution
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.eng.fl_str_mv L-Logistic distribution
Bounded response
Mixture model
Simplex distribution
Bayesian inference
Beta distribution
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-10-10T18:23:04Z
dc.date.available.fl_str_mv 2017-10-10T18:23:04Z
dc.date.issued.fl_str_mv 2017-08-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PAZ, Rosineide Fernando da. Alternative regression models to beta distribution under bayesian approach. 2017. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9146.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/9146
identifier_str_mv PAZ, Rosineide Fernando da. Alternative regression models to beta distribution under bayesian approach. 2017. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9146.
url https://repositorio.ufscar.br/handle/ufscar/9146
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv 712d7773-fe6a-4a4f-a2f1-42684ef30b44
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/9146/1/TeseRFP.pdf
https://repositorio.ufscar.br/bitstream/ufscar/9146/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/9146/3/TeseRFP.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/9146/4/TeseRFP.pdf.jpg
bitstream.checksum.fl_str_mv 8dcd8615da0b442e9f1b52f35364715b
ae0398b6f8b235e40ad82cba6c50031d
8314047e0a0da7d7c4d1edc4329d1539
0b7a08115d6fe686602c32ee69dd6954
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715580767698944