Alternative regression models to beta distribution under bayesian approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/9146 |
Resumo: | The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models. |
id |
SCAR_08bc5f2f30d91d88682e374cdbd32457 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/9146 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Paz, Rosineide Fernando daBazán Guzmán, Jorge Luishttp://lattes.cnpq.br/7302778157579178http://lattes.cnpq.br/0773010734982168d170d2a5-5293-4320-89de-df50acf381f02017-10-10T18:23:04Z2017-10-10T18:23:04Z2017-08-25PAZ, Rosineide Fernando da. Alternative regression models to beta distribution under bayesian approach. 2017. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9146.https://repositorio.ufscar.br/handle/ufscar/9146The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models.A distribuição beta é uma distribuição com suporte limitado que tem dominado a modelagem de variáveis aleatórias que assumem valores entre 0 e 1. Distribuições com suporte limitado surgem em várias situações como em taxas, proporções e índices. Motivados por uma análise de porcentagens de votos eleitorais, em que foi assumida uma distribuição com suporte nos números reais positivos quando uma distribuição com suporte limitado seira mais apropriada, focamos em modelos alternativos a distribuição beta com enfase em modelos de regressão. Neste trabalho, apresentamos, inicialmente, um modelo de mistura de distribuições Simplex como um modelo flexível para modelar a distribuição de variáveis aleatórias que assumem valores em um intervalo limitado, em seguida estendemos o modelo para o contexto de modelos de regressão com a inclusão de covariáveis. A estimação dos parâmetros foi discutida para ambos os modelos, considerando o método bayesiano. Aplicamos os dois modelos a dados simulados para investigarmos a performance dos estimadores usados. Os resultados obtidos foram satisfatórios para todos os casos investigados. Finalmente, introduzimos a distribuição L-Logistica no contexto de modelos de regressão e posteriormente estendemos este modelo para o contexto de misturas de modelos de regressão mista.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarDistribuição L-LogisticaResposta limitadaModelo de misturaDistribuição SimplexInferência bayesianaDistribuição betaL-Logistic distributionBounded responseMixture modelSimplex distributionBayesian inferenceBeta distributionCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAAlternative regression models to beta distribution under bayesian approachModelos de regressão alternativos à distribuição beta sob abordagem bayesianainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600712d7773-fe6a-4a4f-a2f1-42684ef30b44info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseRFP.pdfTeseRFP.pdfapplication/pdf2142415https://repositorio.ufscar.br/bitstream/ufscar/9146/1/TeseRFP.pdf8dcd8615da0b442e9f1b52f35364715bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9146/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseRFP.pdf.txtTeseRFP.pdf.txtExtracted texttext/plain221048https://repositorio.ufscar.br/bitstream/ufscar/9146/3/TeseRFP.pdf.txt8314047e0a0da7d7c4d1edc4329d1539MD53THUMBNAILTeseRFP.pdf.jpgTeseRFP.pdf.jpgIM Thumbnailimage/jpeg4596https://repositorio.ufscar.br/bitstream/ufscar/9146/4/TeseRFP.pdf.jpg0b7a08115d6fe686602c32ee69dd6954MD54ufscar/91462023-09-18 18:31:20.599oai:repositorio.ufscar.br:ufscar/9146TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:20Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Alternative regression models to beta distribution under bayesian approach |
dc.title.alternative.por.fl_str_mv |
Modelos de regressão alternativos à distribuição beta sob abordagem bayesiana |
title |
Alternative regression models to beta distribution under bayesian approach |
spellingShingle |
Alternative regression models to beta distribution under bayesian approach Paz, Rosineide Fernando da Distribuição L-Logistica Resposta limitada Modelo de mistura Distribuição Simplex Inferência bayesiana Distribuição beta L-Logistic distribution Bounded response Mixture model Simplex distribution Bayesian inference Beta distribution CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
title_short |
Alternative regression models to beta distribution under bayesian approach |
title_full |
Alternative regression models to beta distribution under bayesian approach |
title_fullStr |
Alternative regression models to beta distribution under bayesian approach |
title_full_unstemmed |
Alternative regression models to beta distribution under bayesian approach |
title_sort |
Alternative regression models to beta distribution under bayesian approach |
author |
Paz, Rosineide Fernando da |
author_facet |
Paz, Rosineide Fernando da |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/0773010734982168 |
dc.contributor.author.fl_str_mv |
Paz, Rosineide Fernando da |
dc.contributor.advisor1.fl_str_mv |
Bazán Guzmán, Jorge Luis |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7302778157579178 |
dc.contributor.authorID.fl_str_mv |
d170d2a5-5293-4320-89de-df50acf381f0 |
contributor_str_mv |
Bazán Guzmán, Jorge Luis |
dc.subject.por.fl_str_mv |
Distribuição L-Logistica Resposta limitada Modelo de mistura Distribuição Simplex Inferência bayesiana Distribuição beta |
topic |
Distribuição L-Logistica Resposta limitada Modelo de mistura Distribuição Simplex Inferência bayesiana Distribuição beta L-Logistic distribution Bounded response Mixture model Simplex distribution Bayesian inference Beta distribution CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
dc.subject.eng.fl_str_mv |
L-Logistic distribution Bounded response Mixture model Simplex distribution Bayesian inference Beta distribution |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
description |
The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-10-10T18:23:04Z |
dc.date.available.fl_str_mv |
2017-10-10T18:23:04Z |
dc.date.issued.fl_str_mv |
2017-08-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PAZ, Rosineide Fernando da. Alternative regression models to beta distribution under bayesian approach. 2017. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9146. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/9146 |
identifier_str_mv |
PAZ, Rosineide Fernando da. Alternative regression models to beta distribution under bayesian approach. 2017. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9146. |
url |
https://repositorio.ufscar.br/handle/ufscar/9146 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 |
dc.relation.authority.fl_str_mv |
712d7773-fe6a-4a4f-a2f1-42684ef30b44 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/9146/1/TeseRFP.pdf https://repositorio.ufscar.br/bitstream/ufscar/9146/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/9146/3/TeseRFP.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/9146/4/TeseRFP.pdf.jpg |
bitstream.checksum.fl_str_mv |
8dcd8615da0b442e9f1b52f35364715b ae0398b6f8b235e40ad82cba6c50031d 8314047e0a0da7d7c4d1edc4329d1539 0b7a08115d6fe686602c32ee69dd6954 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715580767698944 |