Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue

Detalhes bibliográficos
Autor(a) principal: Tosta, Fabricio Elder da Silva
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/5796
Resumo: Traditionally, Multilingual Multi-document Automatic Summarization (MMAS) is a computational application that, from a single collection of source-texts on the same subject/topic in at least two languages, produces an informative and generic summary (extract) in one of these languages. The simplest methods automatically translate the source-texts and, from a monolingual collection, apply content selection strategies based on shallow and/or deep linguistic knowledge. Therefore, the MMAS applications need to identify the main information of the collection, avoiding the redundancy, but also treating the problems caused by the machine translation (MT) of the full source-texts. Looking for alternatives to the traditional scenario of MMAS, we investigated two methods (Method 1 and 2) that once based on deep linguistic knowledge of lexical-conceptual level avoid the full MT of the sourcetexts, generating informative and cohesive/coherent summaries. In these methods, the content selection starts with the score and the ranking of the original sentences based on the frequency of occurrence of the concepts in the collection, expressed by their common names. In Method 1, only the most well-scored and non redundant sentences from the user s language are selected to compose the extract, until it reaches the compression rate. In Method 2, the original sentences which are better ranked and non redundant are selected to the summary without privileging the user s language; in cases which sentences that are not in the user s language are selected, they are automatically translated. In order to producing automatic summaries according to Methods 1 and 2 and their subsequent evaluation, the CM2News corpus was built. The corpus has 20 collections of news texts, 1 original text in English and 1 original text in Portuguese, both on the same topic. The common names of CM2News were identified through morphosyntactic annotation and then it was semiautomatically annotated with the concepts in Princeton WordNet through the Mulsen graphic editor, which was especially developed for the task. For the production of extracts according to Method 1, only the best ranked sentences in Portuguese were selected until the compression rate was reached. For the production of extracts according to Method 2, the best ranked sentences were selected, without privileging the language of the user. If English sentences were selected, they were automatically translated into Portuguese by the Bing translator. The Methods 1 and 2 were evaluated intrinsically considering the linguistic quality and informativeness of the summaries. To evaluate linguistic quality, 15 computational linguists analyzed manually the grammaticality, non-redundancy, referential clarity, focus and structure / coherence of the summaries and to evaluate the informativeness of the sumaries, they were automatically compared to reference sumaries by ROUGE measures. In both evaluations, the results have shown the better performance of Method 1, which might be explained by the fact that sentences were selected from a single source text. Furthermore, we highlight the best performance of both methods based on lexicalconceptual knowledge compared to simpler methods of MMAS, which adopted the full MT of the source-texts. Finally, it is noted that, besides the promising results on the application of lexical-conceptual knowledge, this work has generated important resources and tools for MMAS, such as the CM2News corpus and the Mulsen editor.
id SCAR_0c91503aaa5c135dc7aa1ac498d0a98a
oai_identifier_str oai:repositorio.ufscar.br:ufscar/5796
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Tosta, Fabricio Elder da SilvaDi Felippo, Arianihttp://lattes.cnpq.br/8648412103197455http://lattes.cnpq.br/00119308548544665560c6dd-11c3-4c32-9116-997b793ac9fa2016-06-02T20:25:23Z2015-03-112016-06-02T20:25:23Z2014-02-27TOSTA, Fabricio Elder da Silva. Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue. 2014. 119 f. Dissertação (Mestrado em Ciências Humanas) - Universidade Federal de São Carlos, São Carlos, 2014.https://repositorio.ufscar.br/handle/ufscar/5796Traditionally, Multilingual Multi-document Automatic Summarization (MMAS) is a computational application that, from a single collection of source-texts on the same subject/topic in at least two languages, produces an informative and generic summary (extract) in one of these languages. The simplest methods automatically translate the source-texts and, from a monolingual collection, apply content selection strategies based on shallow and/or deep linguistic knowledge. Therefore, the MMAS applications need to identify the main information of the collection, avoiding the redundancy, but also treating the problems caused by the machine translation (MT) of the full source-texts. Looking for alternatives to the traditional scenario of MMAS, we investigated two methods (Method 1 and 2) that once based on deep linguistic knowledge of lexical-conceptual level avoid the full MT of the sourcetexts, generating informative and cohesive/coherent summaries. In these methods, the content selection starts with the score and the ranking of the original sentences based on the frequency of occurrence of the concepts in the collection, expressed by their common names. In Method 1, only the most well-scored and non redundant sentences from the user s language are selected to compose the extract, until it reaches the compression rate. In Method 2, the original sentences which are better ranked and non redundant are selected to the summary without privileging the user s language; in cases which sentences that are not in the user s language are selected, they are automatically translated. In order to producing automatic summaries according to Methods 1 and 2 and their subsequent evaluation, the CM2News corpus was built. The corpus has 20 collections of news texts, 1 original text in English and 1 original text in Portuguese, both on the same topic. The common names of CM2News were identified through morphosyntactic annotation and then it was semiautomatically annotated with the concepts in Princeton WordNet through the Mulsen graphic editor, which was especially developed for the task. For the production of extracts according to Method 1, only the best ranked sentences in Portuguese were selected until the compression rate was reached. For the production of extracts according to Method 2, the best ranked sentences were selected, without privileging the language of the user. If English sentences were selected, they were automatically translated into Portuguese by the Bing translator. The Methods 1 and 2 were evaluated intrinsically considering the linguistic quality and informativeness of the summaries. To evaluate linguistic quality, 15 computational linguists analyzed manually the grammaticality, non-redundancy, referential clarity, focus and structure / coherence of the summaries and to evaluate the informativeness of the sumaries, they were automatically compared to reference sumaries by ROUGE measures. In both evaluations, the results have shown the better performance of Method 1, which might be explained by the fact that sentences were selected from a single source text. Furthermore, we highlight the best performance of both methods based on lexicalconceptual knowledge compared to simpler methods of MMAS, which adopted the full MT of the source-texts. Finally, it is noted that, besides the promising results on the application of lexical-conceptual knowledge, this work has generated important resources and tools for MMAS, such as the CM2News corpus and the Mulsen editor.Tradicionalmente, a Sumarização Automática Multidocumento Multilíngue (SAMM) é uma aplicação que, a partir de uma coleção de textos sobre um mesmo assunto em ao menos duas línguas distintas, produz um sumário (extrato) informativo e genérico em uma das línguas-fonte. Os métodos mais simples realizam a tradução automática (TA) dos textos-fonte e, a partir de uma coleção monolíngue, aplicam estratégias superficiais e/ou profundas de seleção de conteúdo. Dessa forma, a SAMM precisa não só identificar a informação principal da coleção para compor o sumário, evitando-se a redundância, mas também lidar com os problemas causados pela TA integral dos textos-fonte. Buscando alternativas para esse cenário, investigaram-se dois métodos (Método 1 e 2) que, uma vez pautados em conhecimento profundo do tipo léxico-conceitual, evitam a TA integral dos textos-fonte, gerando sumários informativos e coesos/coerentes. Neles, a seleção do conteúdo tem início com a pontuação e o ranqueamento das sentenças originais em função da frequência de ocorrência na coleção dos conceitos expressos por seus nomes comuns. No Método 1, apenas as sentenças mais bem pontuadas na língua do usuário e não redundantes entre si são selecionadas para compor o sumário até que se atinja a taxa de compressão. No Método 2, as sentenças originais mais bem ranqueadas e não redundantes entre si são selecionadas para compor o sumário sem que se privilegie a língua do usuário; caso sentenças que não estejam na língua do usuário sejam selecionadas, estas são automaticamente traduzidas. Para a produção dos sumários automáticos segundo os Métodos 1 e 2 e subsequente avaliação dos mesmos, construiu-se o corpus CM2News, que possui 20 coleções de notícias jornalísticas, cada uma delas composta por 1 texto original em inglês e 1 texto original em português sobre um mesmo assunto. Os nomes comuns do CM2News foram identificados via anotação morfossintática e anotados com os conceitos da WordNet de Princeton de forma semiautomática, ou seja, por meio do editor gráfico MulSen desenvolvido para a tarefa. Para a produção dos sumários segundo o Método 1, somente as sentenças em português mais bem pontuadas foram selecionadas até que se atingisse determinada taxa de compressão. Para a produção dos sumários segundo o Método 2, as sentenças mais pontuadas foram selecionadas sem privilegiar a língua do usuário. Caso as sentenças selecionadas estivessem em inglês, estas foram automaticamente traduzidas para o português pelo tradutor Bing. Os Métodos 1 e 2 foram avaliados de forma intrínseca, considerando-se a qualidade linguística e a informatividade dos sumários. Para avaliar a qualidade linguística, 15 linguistas computacionais analisaram manualmente a gramaticalidade, a não-redundância, a clareza referencial, o foco e a estrutura/coerência dos sumários e, para avaliar a informatividade, os sumários foram automaticamente comparados a sumários de referência pelo pacote de medidas ROUGE. Em ambas as avaliações, os resultados evidenciam o melhor desempenho do Método 1, o que pode ser justificado pelo fato de que as sentenças selecionadas são provenientes de um mesmo texto-fonte. Além disso, ressalta-se o melhor desempenho dos dois métodos baseados em conhecimento léxico-conceitual frente aos métodos mais simples de SAMM, os quais realizam a TA integral dos textos-fonte. Por fim, salienta-se que, além dos resultados promissores sobre a aplicação de conhecimento léxico-conceitual, este trabalho gerou recursos e ferramentas importantes para a SAMM, como o corpus CM2News e o editor MulSen.Financiadora de Estudos e Projetosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Linguística - PPGLUFSCarBRLinguísticaSumarização automáticaSumarização multidocumento multilíngueConhecimento léxico-conceitualEstratégias de seleção de conteúdoMultilingual multi-document automatic summarizationLexical-conceptual knowledgeContent selectionLINGUISTICA, LETRAS E ARTES::LINGUISTICAAplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngueinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1-126c5db60-6612-41e6-a8f9-f94fb475ca58info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL6554.pdfapplication/pdf2657931https://repositorio.ufscar.br/bitstream/ufscar/5796/1/6554.pdf11403ad2acdeafd11148154c92757f20MD51TEXT6554.pdf.txt6554.pdf.txtExtracted texttext/plain0https://repositorio.ufscar.br/bitstream/ufscar/5796/2/6554.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD52THUMBNAIL6554.pdf.jpg6554.pdf.jpgIM Thumbnailimage/jpeg10529https://repositorio.ufscar.br/bitstream/ufscar/5796/3/6554.pdf.jpg794fa079bc26e1ccf4d04bc80944b92dMD53ufscar/57962023-09-18 18:31:37.056oai:repositorio.ufscar.br:ufscar/5796Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:37Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue
title Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue
spellingShingle Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue
Tosta, Fabricio Elder da Silva
Linguística
Sumarização automática
Sumarização multidocumento multilíngue
Conhecimento léxico-conceitual
Estratégias de seleção de conteúdo
Multilingual multi-document automatic summarization
Lexical-conceptual knowledge
Content selection
LINGUISTICA, LETRAS E ARTES::LINGUISTICA
title_short Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue
title_full Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue
title_fullStr Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue
title_full_unstemmed Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue
title_sort Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue
author Tosta, Fabricio Elder da Silva
author_facet Tosta, Fabricio Elder da Silva
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/0011930854854466
dc.contributor.author.fl_str_mv Tosta, Fabricio Elder da Silva
dc.contributor.advisor1.fl_str_mv Di Felippo, Ariani
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8648412103197455
dc.contributor.authorID.fl_str_mv 5560c6dd-11c3-4c32-9116-997b793ac9fa
contributor_str_mv Di Felippo, Ariani
dc.subject.por.fl_str_mv Linguística
Sumarização automática
Sumarização multidocumento multilíngue
Conhecimento léxico-conceitual
Estratégias de seleção de conteúdo
topic Linguística
Sumarização automática
Sumarização multidocumento multilíngue
Conhecimento léxico-conceitual
Estratégias de seleção de conteúdo
Multilingual multi-document automatic summarization
Lexical-conceptual knowledge
Content selection
LINGUISTICA, LETRAS E ARTES::LINGUISTICA
dc.subject.eng.fl_str_mv Multilingual multi-document automatic summarization
Lexical-conceptual knowledge
Content selection
dc.subject.cnpq.fl_str_mv LINGUISTICA, LETRAS E ARTES::LINGUISTICA
description Traditionally, Multilingual Multi-document Automatic Summarization (MMAS) is a computational application that, from a single collection of source-texts on the same subject/topic in at least two languages, produces an informative and generic summary (extract) in one of these languages. The simplest methods automatically translate the source-texts and, from a monolingual collection, apply content selection strategies based on shallow and/or deep linguistic knowledge. Therefore, the MMAS applications need to identify the main information of the collection, avoiding the redundancy, but also treating the problems caused by the machine translation (MT) of the full source-texts. Looking for alternatives to the traditional scenario of MMAS, we investigated two methods (Method 1 and 2) that once based on deep linguistic knowledge of lexical-conceptual level avoid the full MT of the sourcetexts, generating informative and cohesive/coherent summaries. In these methods, the content selection starts with the score and the ranking of the original sentences based on the frequency of occurrence of the concepts in the collection, expressed by their common names. In Method 1, only the most well-scored and non redundant sentences from the user s language are selected to compose the extract, until it reaches the compression rate. In Method 2, the original sentences which are better ranked and non redundant are selected to the summary without privileging the user s language; in cases which sentences that are not in the user s language are selected, they are automatically translated. In order to producing automatic summaries according to Methods 1 and 2 and their subsequent evaluation, the CM2News corpus was built. The corpus has 20 collections of news texts, 1 original text in English and 1 original text in Portuguese, both on the same topic. The common names of CM2News were identified through morphosyntactic annotation and then it was semiautomatically annotated with the concepts in Princeton WordNet through the Mulsen graphic editor, which was especially developed for the task. For the production of extracts according to Method 1, only the best ranked sentences in Portuguese were selected until the compression rate was reached. For the production of extracts according to Method 2, the best ranked sentences were selected, without privileging the language of the user. If English sentences were selected, they were automatically translated into Portuguese by the Bing translator. The Methods 1 and 2 were evaluated intrinsically considering the linguistic quality and informativeness of the summaries. To evaluate linguistic quality, 15 computational linguists analyzed manually the grammaticality, non-redundancy, referential clarity, focus and structure / coherence of the summaries and to evaluate the informativeness of the sumaries, they were automatically compared to reference sumaries by ROUGE measures. In both evaluations, the results have shown the better performance of Method 1, which might be explained by the fact that sentences were selected from a single source text. Furthermore, we highlight the best performance of both methods based on lexicalconceptual knowledge compared to simpler methods of MMAS, which adopted the full MT of the source-texts. Finally, it is noted that, besides the promising results on the application of lexical-conceptual knowledge, this work has generated important resources and tools for MMAS, such as the CM2News corpus and the Mulsen editor.
publishDate 2014
dc.date.issued.fl_str_mv 2014-02-27
dc.date.available.fl_str_mv 2015-03-11
2016-06-02T20:25:23Z
dc.date.accessioned.fl_str_mv 2016-06-02T20:25:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv TOSTA, Fabricio Elder da Silva. Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue. 2014. 119 f. Dissertação (Mestrado em Ciências Humanas) - Universidade Federal de São Carlos, São Carlos, 2014.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/5796
identifier_str_mv TOSTA, Fabricio Elder da Silva. Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue. 2014. 119 f. Dissertação (Mestrado em Ciências Humanas) - Universidade Federal de São Carlos, São Carlos, 2014.
url https://repositorio.ufscar.br/handle/ufscar/5796
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
-1
dc.relation.authority.fl_str_mv 26c5db60-6612-41e6-a8f9-f94fb475ca58
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Linguística - PPGL
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/5796/1/6554.pdf
https://repositorio.ufscar.br/bitstream/ufscar/5796/2/6554.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/5796/3/6554.pdf.jpg
bitstream.checksum.fl_str_mv 11403ad2acdeafd11148154c92757f20
d41d8cd98f00b204e9800998ecf8427e
794fa079bc26e1ccf4d04bc80944b92d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715546589364224