Aplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumento

Detalhes bibliográficos
Autor(a) principal: Luca, Rejeane Cassia de
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/11163
Resumo: Automatic Multi-document Summarization (MDS) aims at creating automatically a single summary from a collection of texts on the same topic in order to provide an alternative way to deal with the massive amount of information on the web. Since such summary is often an extract (i.e., a summary composed of unchanged excerpts extracted from the source texts that convey the main idea of the collection), it is required the selection of the most important sentences of the collection. For sentence selection, there are superficial (linguistic or statistical), deep linguistic, and hybrid methods. Despite being less robust and more expensive, the deep methods produce extracts that are not only more informative but also have higher linguistic quality. Considering the promising results of lexical-conceptual methods in incipient MDS or in multilingual MDS surveys, we investigated 4 methods in monolingual MDS for Portuguese, which is based on the frequency the lexical concepts in the cluster for content selection. We selected CSTNews, a reference multi-document corpus in Portuguese, whose verbs and 10% of the most frequent nouns are annotated with their correspondent synsets from Princeton WordNet. Specifically, we selected 5 clusters from the 50 in CSTNews, and extended the conceptual annotation to all nouns. Then, we applied 4 methods to the 5 clusters (i) LCFSummN, based on simple frequency of nominal concepts in the cluster, (ii) based on simple frequency of nominal and verbal concepts in the cluster, (iii) based on weighted-average for nominal concepts, and (iv) based on weighted-average frequency for nominal and verbal concepts. We intrinsically evaluated the extracts generated by each method regarding linguistic quality and informativeness. When compared to a deep state-of-art MDS method for Portuguese, the results of our investigation show the good performances of the lexical-conceptual methods.
id SCAR_cc91bddb93632cf83723d8bfde1edea0
oai_identifier_str oai:repositorio.ufscar.br:ufscar/11163
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Luca, Rejeane Cassia deDi Felippo, Arianihttp://lattes.cnpq.br/8648412103197455http://lattes.cnpq.br/1599276853975000fadf5154-9d68-4164-a98a-646e1c6336fe2019-03-28T17:44:54Z2019-03-28T17:44:54Z2019-02-28LUCA, Rejeane Cassia de. Aplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumento. 2019. Dissertação (Mestrado em Linguística) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11163.https://repositorio.ufscar.br/handle/ufscar/11163Automatic Multi-document Summarization (MDS) aims at creating automatically a single summary from a collection of texts on the same topic in order to provide an alternative way to deal with the massive amount of information on the web. Since such summary is often an extract (i.e., a summary composed of unchanged excerpts extracted from the source texts that convey the main idea of the collection), it is required the selection of the most important sentences of the collection. For sentence selection, there are superficial (linguistic or statistical), deep linguistic, and hybrid methods. Despite being less robust and more expensive, the deep methods produce extracts that are not only more informative but also have higher linguistic quality. Considering the promising results of lexical-conceptual methods in incipient MDS or in multilingual MDS surveys, we investigated 4 methods in monolingual MDS for Portuguese, which is based on the frequency the lexical concepts in the cluster for content selection. We selected CSTNews, a reference multi-document corpus in Portuguese, whose verbs and 10% of the most frequent nouns are annotated with their correspondent synsets from Princeton WordNet. Specifically, we selected 5 clusters from the 50 in CSTNews, and extended the conceptual annotation to all nouns. Then, we applied 4 methods to the 5 clusters (i) LCFSummN, based on simple frequency of nominal concepts in the cluster, (ii) based on simple frequency of nominal and verbal concepts in the cluster, (iii) based on weighted-average for nominal concepts, and (iv) based on weighted-average frequency for nominal and verbal concepts. We intrinsically evaluated the extracts generated by each method regarding linguistic quality and informativeness. When compared to a deep state-of-art MDS method for Portuguese, the results of our investigation show the good performances of the lexical-conceptual methods.Na Sumarização Automática Multidocumento (SAM), produz-se automaticamente um único sumário (resumo) a partir de uma coleção de textos de diferentes fontes que versam sobre um mesmo tópico, com o objetivo de facilitar o acesso à informação. Tais sumários são comumente extratos informativos (isto é, sumários compostos por trechos inalterados dos textos-fonte que veiculam a ideia principal da coleção), o que requer a seleção das sentenças mais importantes. Para tanto, pode-se empregar conhecimento linguístico superficial (ou estatística), conhecimento profundo ou híbrido. Os métodos profundos, apesar de mais caros e menos robustos, produzem extratos mais informativos e com mais qualidade linguística. Tendo em vista os resultados promissores do uso de conhecimento profundo do tipo léxico-conceitual em pesquisas incipientes sobre a SAM ou na SAM multilíngue, investigaram-se 4 métodos distintos na SAM monolíngue para o português, os quais se baseiam primordialmente na frequência de ocorrência de conceitos lexicais na coleção para a seleção de conteúdo. Para tanto, selecionou-se o CSTNews, corpus multidocumento de referência para o português que possui todos os verbos e 10% dos nomes mais frequentes anotados com os conceitos (synsets) da WordNet de Princeton. Para a aplicação dos métodos léxico-conceituais, selecionaram-se 5 coleções do total de 50 do CTSNews, cuja anotação dos nomes foi completada. A partir das 5 coleções com nomes e verbos anotados em nível conceitual, testaram-se os 4 métodos: (i) LCFSummN, baseado na frequência de ocorrência dos nomes na coleção, (ii) LCFSummN-V, baseado na combinação da frequência dos nomes e verbos, (iii) LCFSummN-pond, baseado na média ponderada da frequência dos nomes e (iv) LCFSummN-V-pond, baseado na média ponderada da frequência dos nomes e verbos. Os extratos gerados foram avaliados intrinsecamente quanto à qualidade linguística e informatividade. Quando comparados a um método profundo do estado-da-arte em SAM monolíngue para o português, os resultados do trabalho evidenciam que os métodos léxico-conceituais apresentam bom desempenho.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Linguística - PPGLUFSCarSumarização Automática MultidocumentoConhecimento léxico-conceitualProcessamento Automático de Linguas NaturaisLINGUISTICA, LETRAS E ARTES::LINGUISTICAAplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumentoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline60060026c5db60-6612-41e6-a8f9-f94fb475ca58info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALRejeane C. de Luca - Dissertação Final.pdfRejeane C. de Luca - Dissertação Final.pdfapplication/pdf1752723https://repositorio.ufscar.br/bitstream/ufscar/11163/1/Rejeane%20C.%20de%20Luca%20-%20Disserta%c3%a7%c3%a3o%20Final.pdf74642d79e9571b2cab82fc117154c6b3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/11163/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXTRejeane C. de Luca - Dissertação Final.pdf.txtRejeane C. de Luca - Dissertação Final.pdf.txtExtracted texttext/plain231329https://repositorio.ufscar.br/bitstream/ufscar/11163/4/Rejeane%20C.%20de%20Luca%20-%20Disserta%c3%a7%c3%a3o%20Final.pdf.txtd195fb16a1461547ae25403d8d64c585MD54THUMBNAILRejeane C. de Luca - Dissertação Final.pdf.jpgRejeane C. de Luca - Dissertação Final.pdf.jpgIM Thumbnailimage/jpeg10955https://repositorio.ufscar.br/bitstream/ufscar/11163/5/Rejeane%20C.%20de%20Luca%20-%20Disserta%c3%a7%c3%a3o%20Final.pdf.jpg5d6372bd56bc31a85ef3c9ed642609aeMD55ufscar/111632023-09-18 18:31:21.328oai:repositorio.ufscar.br:ufscar/11163TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:21Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Aplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumento
title Aplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumento
spellingShingle Aplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumento
Luca, Rejeane Cassia de
Sumarização Automática Multidocumento
Conhecimento léxico-conceitual
Processamento Automático de Linguas Naturais
LINGUISTICA, LETRAS E ARTES::LINGUISTICA
title_short Aplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumento
title_full Aplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumento
title_fullStr Aplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumento
title_full_unstemmed Aplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumento
title_sort Aplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumento
author Luca, Rejeane Cassia de
author_facet Luca, Rejeane Cassia de
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1599276853975000
dc.contributor.author.fl_str_mv Luca, Rejeane Cassia de
dc.contributor.advisor1.fl_str_mv Di Felippo, Ariani
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8648412103197455
dc.contributor.authorID.fl_str_mv fadf5154-9d68-4164-a98a-646e1c6336fe
contributor_str_mv Di Felippo, Ariani
dc.subject.por.fl_str_mv Sumarização Automática Multidocumento
Conhecimento léxico-conceitual
Processamento Automático de Linguas Naturais
topic Sumarização Automática Multidocumento
Conhecimento léxico-conceitual
Processamento Automático de Linguas Naturais
LINGUISTICA, LETRAS E ARTES::LINGUISTICA
dc.subject.cnpq.fl_str_mv LINGUISTICA, LETRAS E ARTES::LINGUISTICA
description Automatic Multi-document Summarization (MDS) aims at creating automatically a single summary from a collection of texts on the same topic in order to provide an alternative way to deal with the massive amount of information on the web. Since such summary is often an extract (i.e., a summary composed of unchanged excerpts extracted from the source texts that convey the main idea of the collection), it is required the selection of the most important sentences of the collection. For sentence selection, there are superficial (linguistic or statistical), deep linguistic, and hybrid methods. Despite being less robust and more expensive, the deep methods produce extracts that are not only more informative but also have higher linguistic quality. Considering the promising results of lexical-conceptual methods in incipient MDS or in multilingual MDS surveys, we investigated 4 methods in monolingual MDS for Portuguese, which is based on the frequency the lexical concepts in the cluster for content selection. We selected CSTNews, a reference multi-document corpus in Portuguese, whose verbs and 10% of the most frequent nouns are annotated with their correspondent synsets from Princeton WordNet. Specifically, we selected 5 clusters from the 50 in CSTNews, and extended the conceptual annotation to all nouns. Then, we applied 4 methods to the 5 clusters (i) LCFSummN, based on simple frequency of nominal concepts in the cluster, (ii) based on simple frequency of nominal and verbal concepts in the cluster, (iii) based on weighted-average for nominal concepts, and (iv) based on weighted-average frequency for nominal and verbal concepts. We intrinsically evaluated the extracts generated by each method regarding linguistic quality and informativeness. When compared to a deep state-of-art MDS method for Portuguese, the results of our investigation show the good performances of the lexical-conceptual methods.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-03-28T17:44:54Z
dc.date.available.fl_str_mv 2019-03-28T17:44:54Z
dc.date.issued.fl_str_mv 2019-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LUCA, Rejeane Cassia de. Aplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumento. 2019. Dissertação (Mestrado em Linguística) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11163.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/11163
identifier_str_mv LUCA, Rejeane Cassia de. Aplicação de conhecimento léxico-conceitual na Sumarização Automática Multidocumento. 2019. Dissertação (Mestrado em Linguística) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11163.
url https://repositorio.ufscar.br/handle/ufscar/11163
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 26c5db60-6612-41e6-a8f9-f94fb475ca58
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Linguística - PPGL
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/11163/1/Rejeane%20C.%20de%20Luca%20-%20Disserta%c3%a7%c3%a3o%20Final.pdf
https://repositorio.ufscar.br/bitstream/ufscar/11163/3/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/11163/4/Rejeane%20C.%20de%20Luca%20-%20Disserta%c3%a7%c3%a3o%20Final.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/11163/5/Rejeane%20C.%20de%20Luca%20-%20Disserta%c3%a7%c3%a3o%20Final.pdf.jpg
bitstream.checksum.fl_str_mv 74642d79e9571b2cab82fc117154c6b3
ae0398b6f8b235e40ad82cba6c50031d
d195fb16a1461547ae25403d8d64c585
5d6372bd56bc31a85ef3c9ed642609ae
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715601977245696