Correlação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileiros
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/17430 |
Resumo: | The Covid-19 pandemic hit the population in a heterogeneous way, especially in Brazil, which has a context of high social inequality. The objective of this study was to analyze the spatial correlation between socioeconomic and demographic indicators and the incidence of cases and deaths due to Covid-19 in Brazilian regions. This is an ecological study, carried out in Brazil from March 2020 to June 2022. Data regarding socioeconomic and demographic indicators were collected through the Continuous National Household Sample Survey, and data on cases and deaths of Covid-19 were obtained from the Ministry of Health website. For data analysis, the GeoDa 1.20.0.10 Software was used, calculating the Moran Global Indexes in a univariate and bivariate way, and QGIS 3.26.0 for preparing the maps. approval by the Ethics Committee for Research with Human Beings was required. During the study period, the state of Espírito Santo had the highest incidence of Covid-19 cases, 27,289.14/100,000 population, and Rio de Janeiro, the state with the highest number of deaths, 428.92/100,000 population. According to the analysis by Moran Global, hospitalization changed spatially positively in relation to mortality from Covid-19 in Brazil, that is, this variable is similar to the surrounding states, while the incidence of Covid-19 in the country was not identified. space.In addition, it was possible to identify spatially independent variables in relation to mortality from Covid-19, being moderately positive in relation to literate individuals, as well as white individuals and also individuals aged 20 to 59 years, that is, states with higher mortality also had the largest population with these profiles. Thus, it was concluded that there was a spatial transition between Covid-19 mortality and socioeconomic and demographic indicators in the states of Brazil; however, there was no spatial breathing between the incidence of Covid-19 and these variables. |
id |
SCAR_0d6a8c2ac1e8aa133dd93537952fc8ab |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/17430 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Moraes, Adriani Izabel de SouzaUehara, Sílvia Carla da Silva Andréhttp://lattes.cnpq.br/3903413440784581http://lattes.cnpq.br/4351762697367314325f3d3f-4dcc-4d85-9f08-3cdd5bea3c832023-03-01T13:01:22Z2023-03-01T13:01:22Z2023-01-25MORAES, Adriani Izabel de Souza. Correlação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileiros. 2023. Dissertação (Mestrado em Enfermagem) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17430.https://repositorio.ufscar.br/handle/ufscar/17430The Covid-19 pandemic hit the population in a heterogeneous way, especially in Brazil, which has a context of high social inequality. The objective of this study was to analyze the spatial correlation between socioeconomic and demographic indicators and the incidence of cases and deaths due to Covid-19 in Brazilian regions. This is an ecological study, carried out in Brazil from March 2020 to June 2022. Data regarding socioeconomic and demographic indicators were collected through the Continuous National Household Sample Survey, and data on cases and deaths of Covid-19 were obtained from the Ministry of Health website. For data analysis, the GeoDa 1.20.0.10 Software was used, calculating the Moran Global Indexes in a univariate and bivariate way, and QGIS 3.26.0 for preparing the maps. approval by the Ethics Committee for Research with Human Beings was required. During the study period, the state of Espírito Santo had the highest incidence of Covid-19 cases, 27,289.14/100,000 population, and Rio de Janeiro, the state with the highest number of deaths, 428.92/100,000 population. According to the analysis by Moran Global, hospitalization changed spatially positively in relation to mortality from Covid-19 in Brazil, that is, this variable is similar to the surrounding states, while the incidence of Covid-19 in the country was not identified. space.In addition, it was possible to identify spatially independent variables in relation to mortality from Covid-19, being moderately positive in relation to literate individuals, as well as white individuals and also individuals aged 20 to 59 years, that is, states with higher mortality also had the largest population with these profiles. Thus, it was concluded that there was a spatial transition between Covid-19 mortality and socioeconomic and demographic indicators in the states of Brazil; however, there was no spatial breathing between the incidence of Covid-19 and these variables.A pandemia de Covid-19 atingiu de forma heterogênea a população, especialmente no Brasil, que possui um contexto de elevada desigualdade social. O objetivo deste estudo foi analisar a correlação espacial entre os indicadores socioeconômicos e demográficos e a incidência dos casos e óbitos por Covid-19 nas regiões brasileiras. Trata-se de um estudo ecológico, realizado no Brasil no período de março de 2020 a junho de 2022. As variáveis independentes foram população, sexo, idade, raça, alfabetização e índice de Gini; e as variáveis dependentes, incidência e mortalidade por Covid-19 no Brasil. Os dados referentes aos indicadores socioeconômicos e demográficos foram coletados por meio da Pesquisa Nacional por Amostra de Domicílios Contínua, e os dados de casos e óbitos de Covid-19 foram obtidos no site do Ministério da Saúde. Para análise dos dados, foi utilizado o Software GeoDa 1.20.0.10, calculando os Índices de Moran Global de forma uni e bivariada, e o QGIS 3.26.0 para elaboração dos mapas. Por se tratar de uma pesquisa com dados de acesso público, não foi necessário apreciação pelo Comitê de Ética em Pesquisa. No período do estudo, foi registrado no estado do Espírito Santo a maior incidência de casos de Covid-19, 27289,14/100.000 habitantes, e o Rio de Janeiro, o estado com maior número de óbitos 428,92/100.000 habitantes. Segundo a análise de Moran Global, verificou-se correlação espacial positiva moderada em relação à mortalidade por Covid-19 no Brasil, ou seja, essa variável possui semelhança com os estados circunvizinhos, enquanto a incidência de Covid-19 no país não foi identificada correlação espacial. Ademais, foi possível identificar correlação espacial das variáveis independentes em relação a mortalidade por Covid-19, sendo positiva moderada em relação aos indivíduos alfabetizados, assim como aos indivíduos brancos e também a indivíduos de 20 a 59 anos, ou seja, estados com maior mortalidade também possuíam maior população com esses perfis. Assim, concluiu-se que houve correlação espacial entre mortalidade por Covid-19 e os indicadores socioeconômicos e demográficos nos estados do Brasil; porém, não houve correlação espacial entre a incidência de Covid-19 e essas variáveis.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Enfermagem - PPGEnfUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCovid-19Análise espacialIndicadores sociaisIndicadores econômicosSars-Cov-2Social indicatorsEconomic indicatorsSpatial analysisCIENCIAS DA SAUDE::ENFERMAGEMCorrelação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileirosCorrelation between socioeconomic and demographic indicators and distribution of COVID-19 cases in Brazilian statesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis600600083713d3-85ef-4463-af88-eb051777ae12reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALmestrado_Adriani.pdfmestrado_Adriani.pdfapplication/pdf1962706https://repositorio.ufscar.br/bitstream/ufscar/17430/1/mestrado_Adriani.pdf5467464e2f4c1554a57cd2662aca9f55MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.ufscar.br/bitstream/ufscar/17430/2/license_rdff337d95da1fce0a22c77480e5e9a7aecMD52TEXTmestrado_Adriani.pdf.txtmestrado_Adriani.pdf.txtExtracted texttext/plain206532https://repositorio.ufscar.br/bitstream/ufscar/17430/3/mestrado_Adriani.pdf.txt1a4e0c8172f604cd161e6dba83e0732bMD53THUMBNAILmestrado_Adriani.pdf.jpgmestrado_Adriani.pdf.jpgIM Thumbnailimage/jpeg5521https://repositorio.ufscar.br/bitstream/ufscar/17430/4/mestrado_Adriani.pdf.jpg98d23eb9ea458787fadfd4834db2a748MD54ufscar/174302023-09-18 18:32:35.764oai:repositorio.ufscar.br:ufscar/17430Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:35Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Correlação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileiros |
dc.title.alternative.eng.fl_str_mv |
Correlation between socioeconomic and demographic indicators and distribution of COVID-19 cases in Brazilian states |
title |
Correlação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileiros |
spellingShingle |
Correlação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileiros Moraes, Adriani Izabel de Souza Covid-19 Análise espacial Indicadores sociais Indicadores econômicos Sars-Cov-2 Social indicators Economic indicators Spatial analysis CIENCIAS DA SAUDE::ENFERMAGEM |
title_short |
Correlação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileiros |
title_full |
Correlação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileiros |
title_fullStr |
Correlação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileiros |
title_full_unstemmed |
Correlação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileiros |
title_sort |
Correlação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileiros |
author |
Moraes, Adriani Izabel de Souza |
author_facet |
Moraes, Adriani Izabel de Souza |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/4351762697367314 |
dc.contributor.author.fl_str_mv |
Moraes, Adriani Izabel de Souza |
dc.contributor.advisor1.fl_str_mv |
Uehara, Sílvia Carla da Silva André |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3903413440784581 |
dc.contributor.authorID.fl_str_mv |
325f3d3f-4dcc-4d85-9f08-3cdd5bea3c83 |
contributor_str_mv |
Uehara, Sílvia Carla da Silva André |
dc.subject.por.fl_str_mv |
Covid-19 Análise espacial Indicadores sociais Indicadores econômicos |
topic |
Covid-19 Análise espacial Indicadores sociais Indicadores econômicos Sars-Cov-2 Social indicators Economic indicators Spatial analysis CIENCIAS DA SAUDE::ENFERMAGEM |
dc.subject.eng.fl_str_mv |
Sars-Cov-2 Social indicators Economic indicators Spatial analysis |
dc.subject.cnpq.fl_str_mv |
CIENCIAS DA SAUDE::ENFERMAGEM |
description |
The Covid-19 pandemic hit the population in a heterogeneous way, especially in Brazil, which has a context of high social inequality. The objective of this study was to analyze the spatial correlation between socioeconomic and demographic indicators and the incidence of cases and deaths due to Covid-19 in Brazilian regions. This is an ecological study, carried out in Brazil from March 2020 to June 2022. Data regarding socioeconomic and demographic indicators were collected through the Continuous National Household Sample Survey, and data on cases and deaths of Covid-19 were obtained from the Ministry of Health website. For data analysis, the GeoDa 1.20.0.10 Software was used, calculating the Moran Global Indexes in a univariate and bivariate way, and QGIS 3.26.0 for preparing the maps. approval by the Ethics Committee for Research with Human Beings was required. During the study period, the state of Espírito Santo had the highest incidence of Covid-19 cases, 27,289.14/100,000 population, and Rio de Janeiro, the state with the highest number of deaths, 428.92/100,000 population. According to the analysis by Moran Global, hospitalization changed spatially positively in relation to mortality from Covid-19 in Brazil, that is, this variable is similar to the surrounding states, while the incidence of Covid-19 in the country was not identified. space.In addition, it was possible to identify spatially independent variables in relation to mortality from Covid-19, being moderately positive in relation to literate individuals, as well as white individuals and also individuals aged 20 to 59 years, that is, states with higher mortality also had the largest population with these profiles. Thus, it was concluded that there was a spatial transition between Covid-19 mortality and socioeconomic and demographic indicators in the states of Brazil; however, there was no spatial breathing between the incidence of Covid-19 and these variables. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-03-01T13:01:22Z |
dc.date.available.fl_str_mv |
2023-03-01T13:01:22Z |
dc.date.issued.fl_str_mv |
2023-01-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MORAES, Adriani Izabel de Souza. Correlação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileiros. 2023. Dissertação (Mestrado em Enfermagem) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17430. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/17430 |
identifier_str_mv |
MORAES, Adriani Izabel de Souza. Correlação entre indicadores socioeconômicos e demográficos e distribuição dos casos de COVID-19 nos estados brasileiros. 2023. Dissertação (Mestrado em Enfermagem) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17430. |
url |
https://repositorio.ufscar.br/handle/ufscar/17430 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
083713d3-85ef-4463-af88-eb051777ae12 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Enfermagem - PPGEnf |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/17430/1/mestrado_Adriani.pdf https://repositorio.ufscar.br/bitstream/ufscar/17430/2/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/17430/3/mestrado_Adriani.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/17430/4/mestrado_Adriani.pdf.jpg |
bitstream.checksum.fl_str_mv |
5467464e2f4c1554a57cd2662aca9f55 f337d95da1fce0a22c77480e5e9a7aec 1a4e0c8172f604cd161e6dba83e0732b 98d23eb9ea458787fadfd4834db2a748 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715659698208768 |