Mg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storage
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/12316 |
Resumo: | Hydrogen is a promising energy carrier that allows the use of energy in a sustainable form. However, safe and efficient hydrogen storage is a scientific and technological challenge that still has to be overcome. Recently it was reported that some high entropy alloys (HEAs), multicomponent alloys that crystallize as extended solid solutions with simple crystalline structures (BCC or FCC, for instance), present promising hydrogen storage properties. For example, TiVZrNbHf alloy, which forms a BCC single-phase structure, presented higher storage capacity than conventional hydrides. However, most of the papers published so far report compositions based only on transition metal elements, which limit the gravimetric capacities due to their densities. Since Mg is a low-density element promising for hydrogen storage, the study of Mg-containing multicomponent compositions is opportune. Recently, our research group studied an Mg-containing A2B type HEA system, namely, MgTiZrFe0.5Co0.5Ni0.5. This alloy formed a BCC structure when milled under argon, and this phase absorbs up to 1.2 wt.% of H2 before it undergoes a phase transition to FCC hydride during absorption kinetics. The gravimetric capacity of the alloy would have been 3.5 wt.% H2 (hydrogen over metal atoms - H/M=2) if the transformation to the dihydride phase had happened. This master project aimed to study the hydrogen storage behavior of new alloys for the Mg-Ti-Nb-Cr-Mn-Ni and Mg-Ti-Nb-Ni systems. For alloys selection, a thermodynamic model that allows predicting which compositions have the highest tendency to form single-phase microstructures based on extended solid solutions was tested. The selected alloys were produced by high-energy ball milling (HEBM) and evaluated in terms of phase formation and stability and hydrogen storage behavior. All the synthesized alloys formed solid solutions, but no single-phase was obtained and the formation of elemental segregation was observed. The Mg22Ti22Nb22Cr11Mn11Ni11 alloy synthesized under argon atmosphere and under hydrogen pressure absorbed 1.18 wt.% of H2 and desorbed 1.6 wt.% of H2, respectively. The Mg21Ti31Nb31Ni17 alloy synthesized under argon atmosphere and under hydrogen pressure absorbed 1.3 wt.% of H2 and desorbed 2.26 wt.% of H2, respectively. Based on these results, the method of alloy selection and the approach of using Mg-containing compositions could be analyzed. |
id |
SCAR_11413d8a694fc13a3795b6ff8eb19655 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/12316 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Marques, FelipeZepon, Guilhermehttp://lattes.cnpq.br/7924187202036614Pinto, Haroldo Cavalcantihttp://lattes.cnpq.br/2418539772024741http://lattes.cnpq.br/9524793625004994a7ca5620-2d97-4748-9ca5-91d16441e1d72020-03-11T12:55:52Z2020-03-11T12:55:52Z2020-02-20MARQUES, Felipe. Mg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storage. 2020. Dissertação (Mestrado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12316.https://repositorio.ufscar.br/handle/ufscar/12316Hydrogen is a promising energy carrier that allows the use of energy in a sustainable form. However, safe and efficient hydrogen storage is a scientific and technological challenge that still has to be overcome. Recently it was reported that some high entropy alloys (HEAs), multicomponent alloys that crystallize as extended solid solutions with simple crystalline structures (BCC or FCC, for instance), present promising hydrogen storage properties. For example, TiVZrNbHf alloy, which forms a BCC single-phase structure, presented higher storage capacity than conventional hydrides. However, most of the papers published so far report compositions based only on transition metal elements, which limit the gravimetric capacities due to their densities. Since Mg is a low-density element promising for hydrogen storage, the study of Mg-containing multicomponent compositions is opportune. Recently, our research group studied an Mg-containing A2B type HEA system, namely, MgTiZrFe0.5Co0.5Ni0.5. This alloy formed a BCC structure when milled under argon, and this phase absorbs up to 1.2 wt.% of H2 before it undergoes a phase transition to FCC hydride during absorption kinetics. The gravimetric capacity of the alloy would have been 3.5 wt.% H2 (hydrogen over metal atoms - H/M=2) if the transformation to the dihydride phase had happened. This master project aimed to study the hydrogen storage behavior of new alloys for the Mg-Ti-Nb-Cr-Mn-Ni and Mg-Ti-Nb-Ni systems. For alloys selection, a thermodynamic model that allows predicting which compositions have the highest tendency to form single-phase microstructures based on extended solid solutions was tested. The selected alloys were produced by high-energy ball milling (HEBM) and evaluated in terms of phase formation and stability and hydrogen storage behavior. All the synthesized alloys formed solid solutions, but no single-phase was obtained and the formation of elemental segregation was observed. The Mg22Ti22Nb22Cr11Mn11Ni11 alloy synthesized under argon atmosphere and under hydrogen pressure absorbed 1.18 wt.% of H2 and desorbed 1.6 wt.% of H2, respectively. The Mg21Ti31Nb31Ni17 alloy synthesized under argon atmosphere and under hydrogen pressure absorbed 1.3 wt.% of H2 and desorbed 2.26 wt.% of H2, respectively. Based on these results, the method of alloy selection and the approach of using Mg-containing compositions could be analyzed.O hidrogênio é um vetor energético promissor para o uso de energia de forma sustentável. Contudo, o armazenamento seguro e eficiente de hidrogénio é um desafio científico e tecnológico a ser superado. Recentemente foi relatado que ligas de alta entropia (LAE), ligas multicomponentes que se cristalizam como soluções sólidas estendidas com estruturas cristalinas simples (CCC ou CFC, por exemplo), podem apresentar promissoras propriedades de armazenamento . A liga TiVZrNbHf, que forma uma estrutura monofásica CCC, apresentou maior capacidade de armazenamento do que os hidretos convencionais. Porém, os trabalhos publicados até o momento relatam composições baseadas apenas em metais de transição, que limitam as capacidades gravimétricas devido às suas densidades. Como o Mg possui baixa densidade e é promissor para o armazenamento de hidrogênio, o estudo de composições multicomponentes contendo Mg é oportuno. Recentemente, nosso grupo de pesquisa propôs um sistema LAE tipo A2B contendo Mg, MgTiZrFe0.5Co0.5Ni0.5. A liga formou uma estrutura CCC quando moída sob Ar, absorvendo 1,2 p.% de H2 antes de sofrer uma transição de fase para o hidreto CFC durante a cinética de absorção. A capacidade gravimétrica da liga seria de 3,5 p.% H2 (hidrogênio sobre átomos metálicos - H/M=2) caso a transformação para o dihidreto fosse completa. Este projeto de mestrado estudou o comportamento de armazenamento de hidrogênio de novas ligas para os sistemas Mg-Ti-Nb-Cr-Mn-Ni e Mg-Ti-Nb-Ni. Na seleção de ligas, foi testado um modelo termodinâmico que permite prever quais composições têm a maior tendência a formar soluções sólidas monofásicas. As ligas foram produzidas por moagem de alta energia (MAE) e avaliadas em termos de formação e estabilidade de fase e comportamento de armazenamento de hidrogênio. Todas as ligas sintetizadas formarão soluções sólidas, porém nenhuma microestrutura monofásica foi obtida e a formação de segregação de elementos foi observada. A liga Mg22Ti22Nb22Cr11Mn11Ni11 sintetizada sob atmosfera de argônio e pressão de hidrogênio absorveu 1.18 p.% H2 e dessorveu 1.6 p.% H2, respectivamente. Já a liga Mg21Ti31Nb31Ni17 sintetizada sob atmosfera de argônio e pressão de hidrogênio absorveu 1.3 p.% H2 e dessorveu 2.26 p.% H2, respectivamente. Com base nesses resultados, o método de seleção de ligas e a abordagem de utilização de composições contendo Mg foi analisado.OutraConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Instituto Serrapilheira: Serra-1709-17362CNPq: 139296/2018-2CAPES: Código de financiamento 001FAPESP: 2018/08956-0FAPESP: 2019/01857-9engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessHydrogen storageMetal hydridesMulticomponent alloysBall millingArmazenamento de hidrogênioLigas multicomponentesHidretos metálicosMoagem de alta energiaENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::METALURGIA FISICAMg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storageLigas multicomponentes contendo Mg produzidas por moagem de alta energia para armazenamento de hidrogênioinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis600600568abd57-0e60-4552-b88c-e4fa0419bac1reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALFelipe Marques - Dissertação - versão definitiva.pdfFelipe Marques - Dissertação - versão definitiva.pdfapplication/pdf7618579https://repositorio.ufscar.br/bitstream/ufscar/12316/1/Felipe%20Marques%20-%20Disserta%c3%a7%c3%a3o%20-%20vers%c3%a3o%20definitiva.pdf152bc1a327772f3982704b36d6fc51a3MD51BCO carta comprovante autoarquivamento (1).pdfBCO carta comprovante autoarquivamento (1).pdfapplication/pdf245089https://repositorio.ufscar.br/bitstream/ufscar/12316/2/BCO%20carta%20comprovante%20autoarquivamento%20%281%29.pdf8f8082f28d02c7fd8a2b4f5b74fd72eaMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/12316/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTFelipe Marques - Dissertação - versão definitiva.pdf.txtFelipe Marques - Dissertação - versão definitiva.pdf.txtExtracted texttext/plain158513https://repositorio.ufscar.br/bitstream/ufscar/12316/4/Felipe%20Marques%20-%20Disserta%c3%a7%c3%a3o%20-%20vers%c3%a3o%20definitiva.pdf.txtd8e137cb6e3ffa98eb40d8d914d7cd3aMD54BCO carta comprovante autoarquivamento (1).pdf.txtBCO carta comprovante autoarquivamento (1).pdf.txtExtracted texttext/plain1428https://repositorio.ufscar.br/bitstream/ufscar/12316/6/BCO%20carta%20comprovante%20autoarquivamento%20%281%29.pdf.txt5b11c7c4827c56be5b3bbb3c263fef7aMD56THUMBNAILFelipe Marques - Dissertação - versão definitiva.pdf.jpgFelipe Marques - Dissertação - versão definitiva.pdf.jpgIM Thumbnailimage/jpeg6178https://repositorio.ufscar.br/bitstream/ufscar/12316/5/Felipe%20Marques%20-%20Disserta%c3%a7%c3%a3o%20-%20vers%c3%a3o%20definitiva.pdf.jpgff8c3c540eea5d24cff701f5c0254084MD55BCO carta comprovante autoarquivamento (1).pdf.jpgBCO carta comprovante autoarquivamento (1).pdf.jpgIM Thumbnailimage/jpeg9077https://repositorio.ufscar.br/bitstream/ufscar/12316/7/BCO%20carta%20comprovante%20autoarquivamento%20%281%29.pdf.jpgb32f9c78b5e79dd0a307ed0f4fbb2500MD57ufscar/123162023-09-18 18:31:51.633oai:repositorio.ufscar.br:ufscar/12316Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:51Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Mg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storage |
dc.title.alternative.por.fl_str_mv |
Ligas multicomponentes contendo Mg produzidas por moagem de alta energia para armazenamento de hidrogênio |
title |
Mg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storage |
spellingShingle |
Mg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storage Marques, Felipe Hydrogen storage Metal hydrides Multicomponent alloys Ball milling Armazenamento de hidrogênio Ligas multicomponentes Hidretos metálicos Moagem de alta energia ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::METALURGIA FISICA |
title_short |
Mg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storage |
title_full |
Mg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storage |
title_fullStr |
Mg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storage |
title_full_unstemmed |
Mg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storage |
title_sort |
Mg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storage |
author |
Marques, Felipe |
author_facet |
Marques, Felipe |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/9524793625004994 |
dc.contributor.author.fl_str_mv |
Marques, Felipe |
dc.contributor.advisor1.fl_str_mv |
Zepon, Guilherme |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7924187202036614 |
dc.contributor.advisor-co1.fl_str_mv |
Pinto, Haroldo Cavalcanti |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/2418539772024741 |
dc.contributor.authorID.fl_str_mv |
a7ca5620-2d97-4748-9ca5-91d16441e1d7 |
contributor_str_mv |
Zepon, Guilherme Pinto, Haroldo Cavalcanti |
dc.subject.eng.fl_str_mv |
Hydrogen storage Metal hydrides Multicomponent alloys Ball milling |
topic |
Hydrogen storage Metal hydrides Multicomponent alloys Ball milling Armazenamento de hidrogênio Ligas multicomponentes Hidretos metálicos Moagem de alta energia ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::METALURGIA FISICA |
dc.subject.por.fl_str_mv |
Armazenamento de hidrogênio Ligas multicomponentes Hidretos metálicos Moagem de alta energia |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::METALURGIA FISICA |
description |
Hydrogen is a promising energy carrier that allows the use of energy in a sustainable form. However, safe and efficient hydrogen storage is a scientific and technological challenge that still has to be overcome. Recently it was reported that some high entropy alloys (HEAs), multicomponent alloys that crystallize as extended solid solutions with simple crystalline structures (BCC or FCC, for instance), present promising hydrogen storage properties. For example, TiVZrNbHf alloy, which forms a BCC single-phase structure, presented higher storage capacity than conventional hydrides. However, most of the papers published so far report compositions based only on transition metal elements, which limit the gravimetric capacities due to their densities. Since Mg is a low-density element promising for hydrogen storage, the study of Mg-containing multicomponent compositions is opportune. Recently, our research group studied an Mg-containing A2B type HEA system, namely, MgTiZrFe0.5Co0.5Ni0.5. This alloy formed a BCC structure when milled under argon, and this phase absorbs up to 1.2 wt.% of H2 before it undergoes a phase transition to FCC hydride during absorption kinetics. The gravimetric capacity of the alloy would have been 3.5 wt.% H2 (hydrogen over metal atoms - H/M=2) if the transformation to the dihydride phase had happened. This master project aimed to study the hydrogen storage behavior of new alloys for the Mg-Ti-Nb-Cr-Mn-Ni and Mg-Ti-Nb-Ni systems. For alloys selection, a thermodynamic model that allows predicting which compositions have the highest tendency to form single-phase microstructures based on extended solid solutions was tested. The selected alloys were produced by high-energy ball milling (HEBM) and evaluated in terms of phase formation and stability and hydrogen storage behavior. All the synthesized alloys formed solid solutions, but no single-phase was obtained and the formation of elemental segregation was observed. The Mg22Ti22Nb22Cr11Mn11Ni11 alloy synthesized under argon atmosphere and under hydrogen pressure absorbed 1.18 wt.% of H2 and desorbed 1.6 wt.% of H2, respectively. The Mg21Ti31Nb31Ni17 alloy synthesized under argon atmosphere and under hydrogen pressure absorbed 1.3 wt.% of H2 and desorbed 2.26 wt.% of H2, respectively. Based on these results, the method of alloy selection and the approach of using Mg-containing compositions could be analyzed. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-03-11T12:55:52Z |
dc.date.available.fl_str_mv |
2020-03-11T12:55:52Z |
dc.date.issued.fl_str_mv |
2020-02-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MARQUES, Felipe. Mg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storage. 2020. Dissertação (Mestrado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12316. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/12316 |
identifier_str_mv |
MARQUES, Felipe. Mg-containing multicomponent alloys produced by high-energy ball milling for hydrogen storage. 2020. Dissertação (Mestrado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12316. |
url |
https://repositorio.ufscar.br/handle/ufscar/12316 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
568abd57-0e60-4552-b88c-e4fa0419bac1 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/12316/1/Felipe%20Marques%20-%20Disserta%c3%a7%c3%a3o%20-%20vers%c3%a3o%20definitiva.pdf https://repositorio.ufscar.br/bitstream/ufscar/12316/2/BCO%20carta%20comprovante%20autoarquivamento%20%281%29.pdf https://repositorio.ufscar.br/bitstream/ufscar/12316/3/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/12316/4/Felipe%20Marques%20-%20Disserta%c3%a7%c3%a3o%20-%20vers%c3%a3o%20definitiva.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/12316/6/BCO%20carta%20comprovante%20autoarquivamento%20%281%29.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/12316/5/Felipe%20Marques%20-%20Disserta%c3%a7%c3%a3o%20-%20vers%c3%a3o%20definitiva.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/12316/7/BCO%20carta%20comprovante%20autoarquivamento%20%281%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
152bc1a327772f3982704b36d6fc51a3 8f8082f28d02c7fd8a2b4f5b74fd72ea e39d27027a6cc9cb039ad269a5db8e34 d8e137cb6e3ffa98eb40d8d914d7cd3a 5b11c7c4827c56be5b3bbb3c263fef7a ff8c3c540eea5d24cff701f5c0254084 b32f9c78b5e79dd0a307ed0f4fbb2500 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715613558767616 |