Recuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticos

Detalhes bibliográficos
Autor(a) principal: Lopes, Laiane Antunes
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/9476
Resumo: Magnetic supports have gained attention because the magnetic separation is easy, has low cost and high efficiency. Moreover, it allows the purification and immobilization of a biomolecules in single step. Lipases are hydrolases that catalyze the hydrolysis and the synthesis of esters from glycerol and long chain fatty acids. Lipase from Bacillus thermocatenulatus (BTL-2) has interesting properties such as stability at high temperatures (50 °C), alkaline pH (9.0-11.0) and organic solvent (2-propanol, acetone and methanol). In view of the characteristics that makes BTL-2 a promising lipase for industrial application, concentration and purification is of great importance for implementation in industrial scale. In this context, this study aimed to purify and to immobilize BTL-2 lipase from Bacillus thermocatenulatus produced in recombinant Escherichia coli using magnetic silica microparticles (SMMps). Initially, it was determined the best condition for extraction of the enzyme, changing the pH, buffer and ionic strengh during the sonication. Sodium phosphate buffer 100 mM pH 8.0 has shown to be the best condition for the enzyme extraction. The adsorption of lipase on SMMP-octyl was compared with the adsorption performed using agarose-octyl and silica-octyl. The agarose-octyl support showed the best enzyme adsorption yield (RAE), 92.9%, and higher selectivity in the adsorption of the enzyme. The SMMP-octyl showed higher adsorption capacity per volume of support (189.45 UTBU/mL) than silica-octyl. In order to improve the SMMP adsorption performance, it was changed the octyl groups density on the support surface, by activating with theoretical percentages of 25%, 50% and 75% of octyl groups. SMMP-octyl 75%, after activation with 75% of octyl groups, showed to be the best condition, reaching adsorption with RAE of 92.87% (374.33 UTBU/mL), similar to the obtained using agarose-octyl. The commercial macroporous silica (IM S60P) was also used for comparison of activation procedures with different densities of octyl groups (25, 50, 75 and 100%). The results obtained showed higher activity and the adsorbed protein by support volume with SMMp than silica for all activation degrees. Dessorption tests, however, showed to be possible to dessorve all enzyme from the agarose-octyl, but not from SMMp and silica-octil. The presence of negative charges in silica particles, due to possible ionic interaction with the enzyme may be responsible for this result. The concentration of Triton X-100 0.4% was the best concentration to desorb the enzyme of SMMP-octyl 25%, 75% and 100% and concentration of 0.5% (w/v) was the best concentration for desorption in SMMP-octyl 50%. Adsorption tests in the presence of cellular debris were performed and presented similar behavior those ones observed for the centrifuged and dyalized enzyme solutions: the SMMP-octyl 75% showed higher RAE (71.25%) in the presence of cellular debris. Esterification reactions, using the adsorved enzyme on SMMp in different activation degrees as catalysts, showed that the derivative SMMP-octyl 75% allowed reaching 60.93% conversion in butyrate butyl after 24 hours of reaction. The BTL-2 adsorbed derived directly from cell debris in SMMP-octyl were used in recycles and showed satisfactory conversion in the first cycle, however it decreased in the following cycles.
id SCAR_14cff20fb33d8eb64b2341231bfd6e6c
oai_identifier_str oai:repositorio.ufscar.br:ufscar/9476
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Lopes, Laiane AntunesGiordano, Raquel de Lima Camargohttp://lattes.cnpq.br/9695542424889786Kopp, Willianhttp://lattes.cnpq.br/3856554957880380http://lattes.cnpq.br/6546842202237520b60c05aa-3be8-4b77-8ae6-6ce93dd8a76f2018-02-21T19:59:22Z2018-02-21T19:59:22Z2016-04-06LOPES, Laiane Antunes. Recuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticos. 2016. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9476.https://repositorio.ufscar.br/handle/ufscar/9476Magnetic supports have gained attention because the magnetic separation is easy, has low cost and high efficiency. Moreover, it allows the purification and immobilization of a biomolecules in single step. Lipases are hydrolases that catalyze the hydrolysis and the synthesis of esters from glycerol and long chain fatty acids. Lipase from Bacillus thermocatenulatus (BTL-2) has interesting properties such as stability at high temperatures (50 °C), alkaline pH (9.0-11.0) and organic solvent (2-propanol, acetone and methanol). In view of the characteristics that makes BTL-2 a promising lipase for industrial application, concentration and purification is of great importance for implementation in industrial scale. In this context, this study aimed to purify and to immobilize BTL-2 lipase from Bacillus thermocatenulatus produced in recombinant Escherichia coli using magnetic silica microparticles (SMMps). Initially, it was determined the best condition for extraction of the enzyme, changing the pH, buffer and ionic strengh during the sonication. Sodium phosphate buffer 100 mM pH 8.0 has shown to be the best condition for the enzyme extraction. The adsorption of lipase on SMMP-octyl was compared with the adsorption performed using agarose-octyl and silica-octyl. The agarose-octyl support showed the best enzyme adsorption yield (RAE), 92.9%, and higher selectivity in the adsorption of the enzyme. The SMMP-octyl showed higher adsorption capacity per volume of support (189.45 UTBU/mL) than silica-octyl. In order to improve the SMMP adsorption performance, it was changed the octyl groups density on the support surface, by activating with theoretical percentages of 25%, 50% and 75% of octyl groups. SMMP-octyl 75%, after activation with 75% of octyl groups, showed to be the best condition, reaching adsorption with RAE of 92.87% (374.33 UTBU/mL), similar to the obtained using agarose-octyl. The commercial macroporous silica (IM S60P) was also used for comparison of activation procedures with different densities of octyl groups (25, 50, 75 and 100%). The results obtained showed higher activity and the adsorbed protein by support volume with SMMp than silica for all activation degrees. Dessorption tests, however, showed to be possible to dessorve all enzyme from the agarose-octyl, but not from SMMp and silica-octil. The presence of negative charges in silica particles, due to possible ionic interaction with the enzyme may be responsible for this result. The concentration of Triton X-100 0.4% was the best concentration to desorb the enzyme of SMMP-octyl 25%, 75% and 100% and concentration of 0.5% (w/v) was the best concentration for desorption in SMMP-octyl 50%. Adsorption tests in the presence of cellular debris were performed and presented similar behavior those ones observed for the centrifuged and dyalized enzyme solutions: the SMMP-octyl 75% showed higher RAE (71.25%) in the presence of cellular debris. Esterification reactions, using the adsorved enzyme on SMMp in different activation degrees as catalysts, showed that the derivative SMMP-octyl 75% allowed reaching 60.93% conversion in butyrate butyl after 24 hours of reaction. The BTL-2 adsorbed derived directly from cell debris in SMMP-octyl were used in recycles and showed satisfactory conversion in the first cycle, however it decreased in the following cycles.Suportes magnéticos têm ganhado atenção, pois a sua separação é relativamente rápida, fácil, de baixo custo e de alta eficiência, podendo purificar e imobilizar biomoléculas em uma única etapa. Lipases são hidrolases que catalisam a hidrólise e a síntese de ésteres a partir de glicerol e ácidos graxos de cadeia longa. Lipase 2 de Bacillus thermocatenulatus (BTL-2) possui propriedades interessantes como estabilidade a altas temperaturas (50 °C), pH alcalino (9,0-11,0) e solventes orgânicos (2-propanol, acetona, metanol) que confere a ela potenciais aplicações industriais. Nesse contexto, o presente trabalho teve como objetivo purificar e imobilizar a lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando micropartículas magnéticas de sílica (SMMps). Inicialmente foi determinada a melhor condição para a extração da enzima, por influência de tampão, pH e força iônica na etapa de sonicação para rompimento celular. Tampão fosfato de sódio 100 mM pH 8,0 se mostrou a melhor condição para a extração da enzima. A adsorção da lipase em SMMp-octil ativada com 100% de grupos octil, foi comparada com adsorção em agarose-octil e sílica-octil. O suporte agarose-octil apresentou o melhor rendimento de adsorção de enzima, 92,9%, e também maior seletividade. SMMp-octil apresentou maior capacidade de adsorção por volume de suporte (189,45 UTBU/mL) do que sílica-octil. Com o intuito de melhorar o desempenho da adsorção da BTL-2 em SMMp, modificou-se então a densidade de grupos octil na superfície do suporte, ativando-o com as porcentagens teóricas de 25%, 50% e 75% de grupos octil. SMMp-octil ativado com 75% de grupos octil se mostrou a melhor condição para a adsorção alcançando rendimento de adsorção de enzima (RAE) de 92,87% (374,33 UTBU/mL), similar à agarose-octil. A sílica macroporosa comercial (IM S60P) foi selecionada para comparação dos procedimentos de ativação com diferentes densidades de grupos octil (25, 50, 75 e 100%). Obteve-se, para todas as variações de densidade de grupos octil, que a atividade e a proteína adsorvida por volume de suporte foram superiores para o suporte SMMp. Testes de dessorção, contudo, mostraram que era possível dessorver totalmente a enzima de agarose-octil, mas não de SMMp-octil e de sílica-octil. A concentração de Triton X-100 de 0,4% (m/v) foi a melhor concentração para dessorver a enzima dos suportes SMMp-octil 25%, 75% e 100% e a concentração de 0,5% (m/v) foi a melhor concentração para dessorção em SMMp-octil 50%. Presença de carga negativa na sílica promoveu possível interação iônica com a enzima. Testes na presença de debris celulares mostraram maior RAE (71,25%) para SMMp-octil 75%, comportamento similar ao apresentado pela enzima centrifugada e dialisada, embora com rendimento menor devido à presença de contaminantes. Testes da enzima adsorvida como catalisador mostraram que o derivado SMMp-octil 75% apresentou conversão de 60,93% na síntese de butirato de butila em 24h. Os derivados de BTL-2 adsorvidos diretamente dos debris celulares em SMMp-octil foram utilizados em reciclos e apresentaram conversão satisfatória no primeiro ciclo mas que diminuiu nos ciclos seguintes.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarLipase BTL-2PurificaçãoMicropartículas magnéticas de sílicaBiocatalisadoresPurificationSilica magnetic microparticlesBiocatalystsENGENHARIAS::ENGENHARIA QUIMICARecuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline60060087b60e6c-591e-4a38-94f3-e75e2beebea0info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissLAL.pdfDissLAL.pdfapplication/pdf2802410https://repositorio.ufscar.br/bitstream/ufscar/9476/1/DissLAL.pdf0c40f2630e4fec6bc43528c2f6aa6a51MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9476/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTDissLAL.pdf.txtDissLAL.pdf.txtExtracted texttext/plain300821https://repositorio.ufscar.br/bitstream/ufscar/9476/3/DissLAL.pdf.txt6e83ea9a94f4a2fea3d98180c7d25864MD53THUMBNAILDissLAL.pdf.jpgDissLAL.pdf.jpgIM Thumbnailimage/jpeg7217https://repositorio.ufscar.br/bitstream/ufscar/9476/4/DissLAL.pdf.jpg1624cf3434dbc8458c9a5f4bc1214205MD54ufscar/94762023-09-18 18:31:13.032oai:repositorio.ufscar.br:ufscar/9476TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:13Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Recuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticos
title Recuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticos
spellingShingle Recuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticos
Lopes, Laiane Antunes
Lipase BTL-2
Purificação
Micropartículas magnéticas de sílica
Biocatalisadores
Purification
Silica magnetic microparticles
Biocatalysts
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Recuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticos
title_full Recuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticos
title_fullStr Recuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticos
title_full_unstemmed Recuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticos
title_sort Recuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticos
author Lopes, Laiane Antunes
author_facet Lopes, Laiane Antunes
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/6546842202237520
dc.contributor.author.fl_str_mv Lopes, Laiane Antunes
dc.contributor.advisor1.fl_str_mv Giordano, Raquel de Lima Camargo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9695542424889786
dc.contributor.advisor-co1.fl_str_mv Kopp, Willian
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3856554957880380
dc.contributor.authorID.fl_str_mv b60c05aa-3be8-4b77-8ae6-6ce93dd8a76f
contributor_str_mv Giordano, Raquel de Lima Camargo
Kopp, Willian
dc.subject.por.fl_str_mv Lipase BTL-2
Purificação
Micropartículas magnéticas de sílica
Biocatalisadores
topic Lipase BTL-2
Purificação
Micropartículas magnéticas de sílica
Biocatalisadores
Purification
Silica magnetic microparticles
Biocatalysts
ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Purification
Silica magnetic microparticles
Biocatalysts
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA
description Magnetic supports have gained attention because the magnetic separation is easy, has low cost and high efficiency. Moreover, it allows the purification and immobilization of a biomolecules in single step. Lipases are hydrolases that catalyze the hydrolysis and the synthesis of esters from glycerol and long chain fatty acids. Lipase from Bacillus thermocatenulatus (BTL-2) has interesting properties such as stability at high temperatures (50 °C), alkaline pH (9.0-11.0) and organic solvent (2-propanol, acetone and methanol). In view of the characteristics that makes BTL-2 a promising lipase for industrial application, concentration and purification is of great importance for implementation in industrial scale. In this context, this study aimed to purify and to immobilize BTL-2 lipase from Bacillus thermocatenulatus produced in recombinant Escherichia coli using magnetic silica microparticles (SMMps). Initially, it was determined the best condition for extraction of the enzyme, changing the pH, buffer and ionic strengh during the sonication. Sodium phosphate buffer 100 mM pH 8.0 has shown to be the best condition for the enzyme extraction. The adsorption of lipase on SMMP-octyl was compared with the adsorption performed using agarose-octyl and silica-octyl. The agarose-octyl support showed the best enzyme adsorption yield (RAE), 92.9%, and higher selectivity in the adsorption of the enzyme. The SMMP-octyl showed higher adsorption capacity per volume of support (189.45 UTBU/mL) than silica-octyl. In order to improve the SMMP adsorption performance, it was changed the octyl groups density on the support surface, by activating with theoretical percentages of 25%, 50% and 75% of octyl groups. SMMP-octyl 75%, after activation with 75% of octyl groups, showed to be the best condition, reaching adsorption with RAE of 92.87% (374.33 UTBU/mL), similar to the obtained using agarose-octyl. The commercial macroporous silica (IM S60P) was also used for comparison of activation procedures with different densities of octyl groups (25, 50, 75 and 100%). The results obtained showed higher activity and the adsorbed protein by support volume with SMMp than silica for all activation degrees. Dessorption tests, however, showed to be possible to dessorve all enzyme from the agarose-octyl, but not from SMMp and silica-octil. The presence of negative charges in silica particles, due to possible ionic interaction with the enzyme may be responsible for this result. The concentration of Triton X-100 0.4% was the best concentration to desorb the enzyme of SMMP-octyl 25%, 75% and 100% and concentration of 0.5% (w/v) was the best concentration for desorption in SMMP-octyl 50%. Adsorption tests in the presence of cellular debris were performed and presented similar behavior those ones observed for the centrifuged and dyalized enzyme solutions: the SMMP-octyl 75% showed higher RAE (71.25%) in the presence of cellular debris. Esterification reactions, using the adsorved enzyme on SMMp in different activation degrees as catalysts, showed that the derivative SMMP-octyl 75% allowed reaching 60.93% conversion in butyrate butyl after 24 hours of reaction. The BTL-2 adsorbed derived directly from cell debris in SMMP-octyl were used in recycles and showed satisfactory conversion in the first cycle, however it decreased in the following cycles.
publishDate 2016
dc.date.issued.fl_str_mv 2016-04-06
dc.date.accessioned.fl_str_mv 2018-02-21T19:59:22Z
dc.date.available.fl_str_mv 2018-02-21T19:59:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LOPES, Laiane Antunes. Recuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticos. 2016. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9476.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/9476
identifier_str_mv LOPES, Laiane Antunes. Recuperação de lipase BTL-2 de Bacillus thermocatenulatus produzida em Escherichia coli recombinante empregando suportes magnéticos. 2016. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9476.
url https://repositorio.ufscar.br/handle/ufscar/9476
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 87b60e6c-591e-4a38-94f3-e75e2beebea0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/9476/1/DissLAL.pdf
https://repositorio.ufscar.br/bitstream/ufscar/9476/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/9476/3/DissLAL.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/9476/4/DissLAL.pdf.jpg
bitstream.checksum.fl_str_mv 0c40f2630e4fec6bc43528c2f6aa6a51
ae0398b6f8b235e40ad82cba6c50031d
6e83ea9a94f4a2fea3d98180c7d25864
1624cf3434dbc8458c9a5f4bc1214205
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136335847260160