Agrupamento de dados semissupervisionado na geração de regras fuzzy
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/7061 |
Resumo: | Inductive learning is, traditionally, categorized as supervised and unsupervised. In supervised learning, the learning method is given a labeled data set (classes of data are known). Those data sets are adequate for problems of classification and regression. In unsupervised learning, unlabeled data are analyzed in order to identify structures embedded in data sets. Typically, clustering methods do not make use of previous knowledge, such as classes labels, to execute their job. The characteristics of recently acquired data sets, great volume and mixed attribute structures, contribute to research on better solutions for machine learning jobs. The proposed research fits into this context. It is about semi-supervised fuzzy clustering applied to the generation of sets of fuzzy rules. Semi-supervised clustering does its job by embodying some previous knowledge about the data set. The clustering results are, then, useful for labeling the remaining unlabeled data in the set. Following that, come to action the supervised learning algorithms aimed at generating fuzzy rules. This document contains theoretic concepts, that will help in understanding the research proposal, and a discussion about the context wherein is the proposal. Some experiments were set up to show that this may be an interesting solution for machine learning jobs that have encountered difficulties due to lack of available information about data. |
id |
SCAR_14e03d74d83342162b051572569aa167 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/7061 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Lopes, Priscilla de AbreuCamargo, Heloisa de Arrudahttp://lattes.cnpq.br/0487231065057783http://lattes.cnpq.br/3649682406137432c7734100-c707-4073-8324-9572a2ef52792016-09-12T14:04:09Z2016-09-12T14:04:09Z2010-08-27LOPES, Priscilla de Abreu. Agrupamento de dados semissupervisionado na geração de regras fuzzy. 2010. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2010. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7061.https://repositorio.ufscar.br/handle/ufscar/7061Inductive learning is, traditionally, categorized as supervised and unsupervised. In supervised learning, the learning method is given a labeled data set (classes of data are known). Those data sets are adequate for problems of classification and regression. In unsupervised learning, unlabeled data are analyzed in order to identify structures embedded in data sets. Typically, clustering methods do not make use of previous knowledge, such as classes labels, to execute their job. The characteristics of recently acquired data sets, great volume and mixed attribute structures, contribute to research on better solutions for machine learning jobs. The proposed research fits into this context. It is about semi-supervised fuzzy clustering applied to the generation of sets of fuzzy rules. Semi-supervised clustering does its job by embodying some previous knowledge about the data set. The clustering results are, then, useful for labeling the remaining unlabeled data in the set. Following that, come to action the supervised learning algorithms aimed at generating fuzzy rules. This document contains theoretic concepts, that will help in understanding the research proposal, and a discussion about the context wherein is the proposal. Some experiments were set up to show that this may be an interesting solution for machine learning jobs that have encountered difficulties due to lack of available information about data.O aprendizado indutivo é, tradicionalmente, dividido em supervisionado e não supervisionado. No aprendizado supervisionado é fornecido ao método de aprendizado um conjunto de dados rotulados (dados que tem a classe conhecida). Estes dados são adequados para problemas de classificação e regressão. No aprendizado não supervisionado são analisados dados não rotulados, com o objetivo de identificar estruturas embutidas no conjunto. Tipicamente, métodos de agrupamento não se utilizam de conhecimento prévio, como rótulos de classes, para desempenhar sua tarefa. A característica de conjuntos de dados atuais, grande volume e estruturas de atributos mistas, contribui para a busca de melhores soluções para tarefas de aprendizado de máquina. É neste contexto em que se encaixa esta proposta de pesquisa. Trata-se da aplicação de métodos de agrupamento fuzzy semi-supervisionados na geração de bases de regras fuzzy. Os métodos de agrupamento semi-supervisionados realizam sua tarefa incorporando algum conhecimento prévio a respeito do conjunto de dados. O resultado do agrupamento é, então, utilizado para rotulação do restante do conjunto. Em seguida, entram em ação algoritmos de aprendizado supervisionado que tem como objetivo gerar regras fuzzy. Este documento contém conceitos teóricos para compreensão da proposta de trabalho e uma discussão a respeito do contexto onde se encaixa a proposta. Alguns experimentos foram realizados a fim de mostrar que esta pode ser uma solução interessante para tarefas de aprendizado de máquina que encontram dificuldades devido à falta de informação disponível sobre dados.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAprendizado Semi-SupervisionadoAgrupamento Fuzzy de DadosGeração de Regras FuzzySemi-Supervised LearningFuzzy Data ClusteringFuzzy Rules GenerationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOAgrupamento de dados semissupervisionado na geração de regras fuzzyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600abf34796-0d89-460f-9185-e460cb1c066ainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissPAL.pdfDissPAL.pdfapplication/pdf2245333https://repositorio.ufscar.br/bitstream/ufscar/7061/1/DissPAL.pdf24abfad37e7d0675d6cef494f4f41d1eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7061/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTDissPAL.pdf.txtDissPAL.pdf.txtExtracted texttext/plain154403https://repositorio.ufscar.br/bitstream/ufscar/7061/3/DissPAL.pdf.txtf6e25c50cab027104465d82eccd777a5MD53THUMBNAILDissPAL.pdf.jpgDissPAL.pdf.jpgIM Thumbnailimage/jpeg4381https://repositorio.ufscar.br/bitstream/ufscar/7061/4/DissPAL.pdf.jpg180655e13a5b9561bd95aa49932e6012MD54ufscar/70612023-09-18 18:30:41.562oai:repositorio.ufscar.br:ufscar/7061TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:41Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Agrupamento de dados semissupervisionado na geração de regras fuzzy |
title |
Agrupamento de dados semissupervisionado na geração de regras fuzzy |
spellingShingle |
Agrupamento de dados semissupervisionado na geração de regras fuzzy Lopes, Priscilla de Abreu Aprendizado Semi-Supervisionado Agrupamento Fuzzy de Dados Geração de Regras Fuzzy Semi-Supervised Learning Fuzzy Data Clustering Fuzzy Rules Generation CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
title_short |
Agrupamento de dados semissupervisionado na geração de regras fuzzy |
title_full |
Agrupamento de dados semissupervisionado na geração de regras fuzzy |
title_fullStr |
Agrupamento de dados semissupervisionado na geração de regras fuzzy |
title_full_unstemmed |
Agrupamento de dados semissupervisionado na geração de regras fuzzy |
title_sort |
Agrupamento de dados semissupervisionado na geração de regras fuzzy |
author |
Lopes, Priscilla de Abreu |
author_facet |
Lopes, Priscilla de Abreu |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/3649682406137432 |
dc.contributor.author.fl_str_mv |
Lopes, Priscilla de Abreu |
dc.contributor.advisor1.fl_str_mv |
Camargo, Heloisa de Arruda |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0487231065057783 |
dc.contributor.authorID.fl_str_mv |
c7734100-c707-4073-8324-9572a2ef5279 |
contributor_str_mv |
Camargo, Heloisa de Arruda |
dc.subject.por.fl_str_mv |
Aprendizado Semi-Supervisionado Agrupamento Fuzzy de Dados Geração de Regras Fuzzy |
topic |
Aprendizado Semi-Supervisionado Agrupamento Fuzzy de Dados Geração de Regras Fuzzy Semi-Supervised Learning Fuzzy Data Clustering Fuzzy Rules Generation CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Semi-Supervised Learning Fuzzy Data Clustering Fuzzy Rules Generation |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
description |
Inductive learning is, traditionally, categorized as supervised and unsupervised. In supervised learning, the learning method is given a labeled data set (classes of data are known). Those data sets are adequate for problems of classification and regression. In unsupervised learning, unlabeled data are analyzed in order to identify structures embedded in data sets. Typically, clustering methods do not make use of previous knowledge, such as classes labels, to execute their job. The characteristics of recently acquired data sets, great volume and mixed attribute structures, contribute to research on better solutions for machine learning jobs. The proposed research fits into this context. It is about semi-supervised fuzzy clustering applied to the generation of sets of fuzzy rules. Semi-supervised clustering does its job by embodying some previous knowledge about the data set. The clustering results are, then, useful for labeling the remaining unlabeled data in the set. Following that, come to action the supervised learning algorithms aimed at generating fuzzy rules. This document contains theoretic concepts, that will help in understanding the research proposal, and a discussion about the context wherein is the proposal. Some experiments were set up to show that this may be an interesting solution for machine learning jobs that have encountered difficulties due to lack of available information about data. |
publishDate |
2010 |
dc.date.issued.fl_str_mv |
2010-08-27 |
dc.date.accessioned.fl_str_mv |
2016-09-12T14:04:09Z |
dc.date.available.fl_str_mv |
2016-09-12T14:04:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LOPES, Priscilla de Abreu. Agrupamento de dados semissupervisionado na geração de regras fuzzy. 2010. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2010. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7061. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/7061 |
identifier_str_mv |
LOPES, Priscilla de Abreu. Agrupamento de dados semissupervisionado na geração de regras fuzzy. 2010. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2010. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7061. |
url |
https://repositorio.ufscar.br/handle/ufscar/7061 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
abf34796-0d89-460f-9185-e460cb1c066a |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/7061/1/DissPAL.pdf https://repositorio.ufscar.br/bitstream/ufscar/7061/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/7061/3/DissPAL.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/7061/4/DissPAL.pdf.jpg |
bitstream.checksum.fl_str_mv |
24abfad37e7d0675d6cef494f4f41d1e ae0398b6f8b235e40ad82cba6c50031d f6e25c50cab027104465d82eccd777a5 180655e13a5b9561bd95aa49932e6012 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715556075831296 |