Agrupamento de dados semissupervisionado na geração de regras fuzzy

Detalhes bibliográficos
Autor(a) principal: Lopes, Priscilla de Abreu
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/7061
Resumo: Inductive learning is, traditionally, categorized as supervised and unsupervised. In supervised learning, the learning method is given a labeled data set (classes of data are known). Those data sets are adequate for problems of classification and regression. In unsupervised learning, unlabeled data are analyzed in order to identify structures embedded in data sets. Typically, clustering methods do not make use of previous knowledge, such as classes labels, to execute their job. The characteristics of recently acquired data sets, great volume and mixed attribute structures, contribute to research on better solutions for machine learning jobs. The proposed research fits into this context. It is about semi-supervised fuzzy clustering applied to the generation of sets of fuzzy rules. Semi-supervised clustering does its job by embodying some previous knowledge about the data set. The clustering results are, then, useful for labeling the remaining unlabeled data in the set. Following that, come to action the supervised learning algorithms aimed at generating fuzzy rules. This document contains theoretic concepts, that will help in understanding the research proposal, and a discussion about the context wherein is the proposal. Some experiments were set up to show that this may be an interesting solution for machine learning jobs that have encountered difficulties due to lack of available information about data.
id SCAR_14e03d74d83342162b051572569aa167
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7061
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Lopes, Priscilla de AbreuCamargo, Heloisa de Arrudahttp://lattes.cnpq.br/0487231065057783http://lattes.cnpq.br/3649682406137432c7734100-c707-4073-8324-9572a2ef52792016-09-12T14:04:09Z2016-09-12T14:04:09Z2010-08-27LOPES, Priscilla de Abreu. Agrupamento de dados semissupervisionado na geração de regras fuzzy. 2010. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2010. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7061.https://repositorio.ufscar.br/handle/ufscar/7061Inductive learning is, traditionally, categorized as supervised and unsupervised. In supervised learning, the learning method is given a labeled data set (classes of data are known). Those data sets are adequate for problems of classification and regression. In unsupervised learning, unlabeled data are analyzed in order to identify structures embedded in data sets. Typically, clustering methods do not make use of previous knowledge, such as classes labels, to execute their job. The characteristics of recently acquired data sets, great volume and mixed attribute structures, contribute to research on better solutions for machine learning jobs. The proposed research fits into this context. It is about semi-supervised fuzzy clustering applied to the generation of sets of fuzzy rules. Semi-supervised clustering does its job by embodying some previous knowledge about the data set. The clustering results are, then, useful for labeling the remaining unlabeled data in the set. Following that, come to action the supervised learning algorithms aimed at generating fuzzy rules. This document contains theoretic concepts, that will help in understanding the research proposal, and a discussion about the context wherein is the proposal. Some experiments were set up to show that this may be an interesting solution for machine learning jobs that have encountered difficulties due to lack of available information about data.O aprendizado indutivo é, tradicionalmente, dividido em supervisionado e não supervisionado. No aprendizado supervisionado é fornecido ao método de aprendizado um conjunto de dados rotulados (dados que tem a classe conhecida). Estes dados são adequados para problemas de classificação e regressão. No aprendizado não supervisionado são analisados dados não rotulados, com o objetivo de identificar estruturas embutidas no conjunto. Tipicamente, métodos de agrupamento não se utilizam de conhecimento prévio, como rótulos de classes, para desempenhar sua tarefa. A característica de conjuntos de dados atuais, grande volume e estruturas de atributos mistas, contribui para a busca de melhores soluções para tarefas de aprendizado de máquina. É neste contexto em que se encaixa esta proposta de pesquisa. Trata-se da aplicação de métodos de agrupamento fuzzy semi-supervisionados na geração de bases de regras fuzzy. Os métodos de agrupamento semi-supervisionados realizam sua tarefa incorporando algum conhecimento prévio a respeito do conjunto de dados. O resultado do agrupamento é, então, utilizado para rotulação do restante do conjunto. Em seguida, entram em ação algoritmos de aprendizado supervisionado que tem como objetivo gerar regras fuzzy. Este documento contém conceitos teóricos para compreensão da proposta de trabalho e uma discussão a respeito do contexto onde se encaixa a proposta. Alguns experimentos foram realizados a fim de mostrar que esta pode ser uma solução interessante para tarefas de aprendizado de máquina que encontram dificuldades devido à falta de informação disponível sobre dados.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAprendizado Semi-SupervisionadoAgrupamento Fuzzy de DadosGeração de Regras FuzzySemi-Supervised LearningFuzzy Data ClusteringFuzzy Rules GenerationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOAgrupamento de dados semissupervisionado na geração de regras fuzzyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600abf34796-0d89-460f-9185-e460cb1c066ainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissPAL.pdfDissPAL.pdfapplication/pdf2245333https://repositorio.ufscar.br/bitstream/ufscar/7061/1/DissPAL.pdf24abfad37e7d0675d6cef494f4f41d1eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7061/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTDissPAL.pdf.txtDissPAL.pdf.txtExtracted texttext/plain154403https://repositorio.ufscar.br/bitstream/ufscar/7061/3/DissPAL.pdf.txtf6e25c50cab027104465d82eccd777a5MD53THUMBNAILDissPAL.pdf.jpgDissPAL.pdf.jpgIM Thumbnailimage/jpeg4381https://repositorio.ufscar.br/bitstream/ufscar/7061/4/DissPAL.pdf.jpg180655e13a5b9561bd95aa49932e6012MD54ufscar/70612023-09-18 18:30:41.562oai:repositorio.ufscar.br:ufscar/7061TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:41Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Agrupamento de dados semissupervisionado na geração de regras fuzzy
title Agrupamento de dados semissupervisionado na geração de regras fuzzy
spellingShingle Agrupamento de dados semissupervisionado na geração de regras fuzzy
Lopes, Priscilla de Abreu
Aprendizado Semi-Supervisionado
Agrupamento Fuzzy de Dados
Geração de Regras Fuzzy
Semi-Supervised Learning
Fuzzy Data Clustering
Fuzzy Rules Generation
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
title_short Agrupamento de dados semissupervisionado na geração de regras fuzzy
title_full Agrupamento de dados semissupervisionado na geração de regras fuzzy
title_fullStr Agrupamento de dados semissupervisionado na geração de regras fuzzy
title_full_unstemmed Agrupamento de dados semissupervisionado na geração de regras fuzzy
title_sort Agrupamento de dados semissupervisionado na geração de regras fuzzy
author Lopes, Priscilla de Abreu
author_facet Lopes, Priscilla de Abreu
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3649682406137432
dc.contributor.author.fl_str_mv Lopes, Priscilla de Abreu
dc.contributor.advisor1.fl_str_mv Camargo, Heloisa de Arruda
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0487231065057783
dc.contributor.authorID.fl_str_mv c7734100-c707-4073-8324-9572a2ef5279
contributor_str_mv Camargo, Heloisa de Arruda
dc.subject.por.fl_str_mv Aprendizado Semi-Supervisionado
Agrupamento Fuzzy de Dados
Geração de Regras Fuzzy
topic Aprendizado Semi-Supervisionado
Agrupamento Fuzzy de Dados
Geração de Regras Fuzzy
Semi-Supervised Learning
Fuzzy Data Clustering
Fuzzy Rules Generation
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
dc.subject.eng.fl_str_mv Semi-Supervised Learning
Fuzzy Data Clustering
Fuzzy Rules Generation
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
description Inductive learning is, traditionally, categorized as supervised and unsupervised. In supervised learning, the learning method is given a labeled data set (classes of data are known). Those data sets are adequate for problems of classification and regression. In unsupervised learning, unlabeled data are analyzed in order to identify structures embedded in data sets. Typically, clustering methods do not make use of previous knowledge, such as classes labels, to execute their job. The characteristics of recently acquired data sets, great volume and mixed attribute structures, contribute to research on better solutions for machine learning jobs. The proposed research fits into this context. It is about semi-supervised fuzzy clustering applied to the generation of sets of fuzzy rules. Semi-supervised clustering does its job by embodying some previous knowledge about the data set. The clustering results are, then, useful for labeling the remaining unlabeled data in the set. Following that, come to action the supervised learning algorithms aimed at generating fuzzy rules. This document contains theoretic concepts, that will help in understanding the research proposal, and a discussion about the context wherein is the proposal. Some experiments were set up to show that this may be an interesting solution for machine learning jobs that have encountered difficulties due to lack of available information about data.
publishDate 2010
dc.date.issued.fl_str_mv 2010-08-27
dc.date.accessioned.fl_str_mv 2016-09-12T14:04:09Z
dc.date.available.fl_str_mv 2016-09-12T14:04:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LOPES, Priscilla de Abreu. Agrupamento de dados semissupervisionado na geração de regras fuzzy. 2010. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2010. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7061.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7061
identifier_str_mv LOPES, Priscilla de Abreu. Agrupamento de dados semissupervisionado na geração de regras fuzzy. 2010. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2010. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7061.
url https://repositorio.ufscar.br/handle/ufscar/7061
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv abf34796-0d89-460f-9185-e460cb1c066a
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/7061/1/DissPAL.pdf
https://repositorio.ufscar.br/bitstream/ufscar/7061/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/7061/3/DissPAL.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/7061/4/DissPAL.pdf.jpg
bitstream.checksum.fl_str_mv 24abfad37e7d0675d6cef494f4f41d1e
ae0398b6f8b235e40ad82cba6c50031d
f6e25c50cab027104465d82eccd777a5
180655e13a5b9561bd95aa49932e6012
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715556075831296