Time series forecasting : advances on Theta method

Detalhes bibliográficos
Autor(a) principal: Fiorucci, José Augusto
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/7399
Resumo: Accurate and robust forecasting methods for univariate time series are critical as the historical data can be used in the strategic planning of such future operations as buying and selling to ensure product inventory and meet market demands. In this context, several competitions for time series forecasting have been organized, with the M3-Competition as the largest. As the winner of M3-Competition, the Theta method has attracted attention from researchers for its predictive performance and simplicity. The Theta method is a combination of other methods, which proposes the decomposition of the deseasonalized time series into two other time series called "theta lines". The first completely removes the curvatures of the data, thus accurately estimating the long-term trend. The second doubles the curvatures to better approximate short-term behavior. Several issues have been raised about the Theta method, even by its originators. They include the number of theta lines, their parameters, weights to combine them, and construction of prediction intervals, among others. This doctorate thesis resolves part of these issues. We derive optimal weights for combine the theta lines, this result is used to derive statistical models which generalizes /approximate the standard Theta method. The statistical methodology is considering for parameter estimation and for compute the prediction intervals. The optimal weights are also used to propose new methods that hold two or more theta lines. Part of proposed methodology is implemented in a package for R-programming language. In an empirical investigation using the M3-Competition data set with more than 3000 time series, the proposed methods/models demonstrated significant accuracy. The study’s primary approach, the Dynamic Optimised Theta Model, outperformed all benchmarks methods, constituting, in all likelihood, the highest-performing method for this data set available in the literature.
id SCAR_28be4be54d2f795f02a45d339bb49088
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7399
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Fiorucci, José AugustoLouzada Neto, Franciscohttp://lattes.cnpq.br/0994050156415890http://lattes.cnpq.br/14732198104726348f6342ff-2549-4c75-bbec-10d7de2263cb2016-09-23T18:27:17Z2016-09-23T18:27:17Z2016-05-13FIORUCCI, José Augusto. Time series forecasting : advances on Theta method. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7399.https://repositorio.ufscar.br/handle/ufscar/7399Accurate and robust forecasting methods for univariate time series are critical as the historical data can be used in the strategic planning of such future operations as buying and selling to ensure product inventory and meet market demands. In this context, several competitions for time series forecasting have been organized, with the M3-Competition as the largest. As the winner of M3-Competition, the Theta method has attracted attention from researchers for its predictive performance and simplicity. The Theta method is a combination of other methods, which proposes the decomposition of the deseasonalized time series into two other time series called "theta lines". The first completely removes the curvatures of the data, thus accurately estimating the long-term trend. The second doubles the curvatures to better approximate short-term behavior. Several issues have been raised about the Theta method, even by its originators. They include the number of theta lines, their parameters, weights to combine them, and construction of prediction intervals, among others. This doctorate thesis resolves part of these issues. We derive optimal weights for combine the theta lines, this result is used to derive statistical models which generalizes /approximate the standard Theta method. The statistical methodology is considering for parameter estimation and for compute the prediction intervals. The optimal weights are also used to propose new methods that hold two or more theta lines. Part of proposed methodology is implemented in a package for R-programming language. In an empirical investigation using the M3-Competition data set with more than 3000 time series, the proposed methods/models demonstrated significant accuracy. The study’s primary approach, the Dynamic Optimised Theta Model, outperformed all benchmarks methods, constituting, in all likelihood, the highest-performing method for this data set available in the literature.Métodos precisos e robustos para prever séries temporais são muito importantes em diversas áreas. Uma vez que os dados históricos são utilizados para o planejamento estratégico de operações futuras, como compra ou venda de determinados produtos para controle de estoque e demanda. Neste contexto, várias competições para métodos de previsão de séries temporais univariadas foram realizadas, sendo a Competição M3 a maior. Ao vencer a Competição M3, o método Theta intrigou pesquisadores por sua capacidade preditiva e simplicidade. O método Theta é uma combinação de outros métodos, o qual propõe decompor a série temporal (desazonalizada) em outras duas séries temporais chamadas de "linhas thetas". A primeira linha theta remove completamente a curvatura dos dados, sendo assim um estimador para a tendência a longo prazo. A segunda linha theta dobra a curvatura da série sendo assim um estimador para a componente de curto prazo. Várias questões relacionadas ao método Theta foram levantadas, algumas pelos próprios autores, como parâmetros ideais para as linhas thetas, pesos para combinar as linhas thetas, construção de intervalos de predição, número ideal de linhas thetas, entre outras. Nesta tese algumas dessas questões são solucionadas. Pesos ótimos para a combinação de linhas thetas são derivados, esses resultados são utilizados para a construção de modelos estatísticos que generalizam/aproximam o método Theta padrão. A metodologia estatística é empregada para estimação dos parâmetros e construção de intervalos de predição. Os pesos ótimos também são utilizados para propor métodos que consideram duas ou mais linhas thetas. Parte da metodologia proposta é implementada em um pacote para a linguagem de programação R. Em um estudo empírico com mais de 3000 séries temporais do conjunto de dados da competição M3, os métodos/modelos propostos mostraram-se acurados. A nossa principal abordagem, o modelo DOTM ("Dynamic Optimised Theta Model") superou todos os concorrentes, sendo possivelmente o método com o melhor desempenho nesse conjunto de dados já disponibilizado na literatura.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Estatística - PPGEsUFSCarPrevisãoSéries temporaisMétodo ThetaM3-CompetitionRevisão sistemáticaCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICATime series forecasting : advances on Theta methodinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600d0f3b31a-38c4-4c28-aa5b-837ad377108einfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseJAF.pdfTeseJAF.pdfapplication/pdf1812104https://repositorio.ufscar.br/bitstream/ufscar/7399/1/TeseJAF.pdf817ececd9c05df0ddae3a91de3c8bb14MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7399/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseJAF.pdf.txtTeseJAF.pdf.txtExtracted texttext/plain183806https://repositorio.ufscar.br/bitstream/ufscar/7399/3/TeseJAF.pdf.txt9ae1482dfec7effe966f97bd9abb5bdeMD53THUMBNAILTeseJAF.pdf.jpgTeseJAF.pdf.jpgIM Thumbnailimage/jpeg5663https://repositorio.ufscar.br/bitstream/ufscar/7399/4/TeseJAF.pdf.jpga079c00ebef6b154fb088e3f3a5f805bMD54ufscar/73992023-09-18 18:30:49.506oai:repositorio.ufscar.br:ufscar/7399TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:49Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Time series forecasting : advances on Theta method
title Time series forecasting : advances on Theta method
spellingShingle Time series forecasting : advances on Theta method
Fiorucci, José Augusto
Previsão
Séries temporais
Método Theta
M3-Competition
Revisão sistemática
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Time series forecasting : advances on Theta method
title_full Time series forecasting : advances on Theta method
title_fullStr Time series forecasting : advances on Theta method
title_full_unstemmed Time series forecasting : advances on Theta method
title_sort Time series forecasting : advances on Theta method
author Fiorucci, José Augusto
author_facet Fiorucci, José Augusto
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1473219810472634
dc.contributor.author.fl_str_mv Fiorucci, José Augusto
dc.contributor.advisor1.fl_str_mv Louzada Neto, Francisco
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0994050156415890
dc.contributor.authorID.fl_str_mv 8f6342ff-2549-4c75-bbec-10d7de2263cb
contributor_str_mv Louzada Neto, Francisco
dc.subject.por.fl_str_mv Previsão
Séries temporais
Método Theta
M3-Competition
Revisão sistemática
topic Previsão
Séries temporais
Método Theta
M3-Competition
Revisão sistemática
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description Accurate and robust forecasting methods for univariate time series are critical as the historical data can be used in the strategic planning of such future operations as buying and selling to ensure product inventory and meet market demands. In this context, several competitions for time series forecasting have been organized, with the M3-Competition as the largest. As the winner of M3-Competition, the Theta method has attracted attention from researchers for its predictive performance and simplicity. The Theta method is a combination of other methods, which proposes the decomposition of the deseasonalized time series into two other time series called "theta lines". The first completely removes the curvatures of the data, thus accurately estimating the long-term trend. The second doubles the curvatures to better approximate short-term behavior. Several issues have been raised about the Theta method, even by its originators. They include the number of theta lines, their parameters, weights to combine them, and construction of prediction intervals, among others. This doctorate thesis resolves part of these issues. We derive optimal weights for combine the theta lines, this result is used to derive statistical models which generalizes /approximate the standard Theta method. The statistical methodology is considering for parameter estimation and for compute the prediction intervals. The optimal weights are also used to propose new methods that hold two or more theta lines. Part of proposed methodology is implemented in a package for R-programming language. In an empirical investigation using the M3-Competition data set with more than 3000 time series, the proposed methods/models demonstrated significant accuracy. The study’s primary approach, the Dynamic Optimised Theta Model, outperformed all benchmarks methods, constituting, in all likelihood, the highest-performing method for this data set available in the literature.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-09-23T18:27:17Z
dc.date.available.fl_str_mv 2016-09-23T18:27:17Z
dc.date.issued.fl_str_mv 2016-05-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FIORUCCI, José Augusto. Time series forecasting : advances on Theta method. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7399.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7399
identifier_str_mv FIORUCCI, José Augusto. Time series forecasting : advances on Theta method. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7399.
url https://repositorio.ufscar.br/handle/ufscar/7399
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv d0f3b31a-38c4-4c28-aa5b-837ad377108e
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Estatística - PPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/7399/1/TeseJAF.pdf
https://repositorio.ufscar.br/bitstream/ufscar/7399/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/7399/3/TeseJAF.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/7399/4/TeseJAF.pdf.jpg
bitstream.checksum.fl_str_mv 817ececd9c05df0ddae3a91de3c8bb14
ae0398b6f8b235e40ad82cba6c50031d
9ae1482dfec7effe966f97bd9abb5bde
a079c00ebef6b154fb088e3f3a5f805b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715560004845568