Problema de N Corpos e sua Relação com o Caos

Detalhes bibliográficos
Autor(a) principal: Souza, Jéssica Cristina Leonel de
Data de Publicação: 2022
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/16265
Resumo: Daily experience shows that nature is made up of countless bodies interacting with each other, macroscopic, like planets and stars, or microscopic, such as atoms and molecules. The laws of motion established by Isaac Newton in the 17th century were developed to explain how forces act on bodies to produce motion and how bodies interact with each other. Newton was the first to formally solve the problem of N = 2 massive bodies moving in three-dimensional space, with their initial positions and velocities known, and interacting with each other under the exclusive action of gravity. The universal gravitational law was successfully applied to solve this problem, prooving the three laws of Kepler, which were established for the description of the motion of the planets in the solar system. From this result, Newton naturally extended his analysis to the three-body problem, in order to describe the Earth-Moon-Sun system. However, the problem for N ≥ 3 bodies has become a challenge for humanity, remaining even today without a complete analytical solution, that can provide the trajectories of the system. Nevertheless, restricted solutions of this problem showed that extremely complex dynamics could be observed in simple deterministic systems. These results marked the beginning of the study of chaotic systems. In this work we present how the fundamental properties of these systems can be introduced and discussed from the two-body problem in the context of celestial mechanics. We start with this problem to discuss the basic principles and concepts of Classical Mechanics such as the initial state of a system, its center of mass and the principles of conservation of energy and of angular and linear momenta. These were essential to demonstrate analytically that the trajectories of the system are described by stable and periodic orbits, as established by Kepler’s laws. The emergence of chaos in this system is observed by considering the general three-body problem. The addition of one more body caused the stability and regularity of the trajectories observed in the two-body system to disappear, giving way to irregular, non-periodic and extremely sensitive dependence on the initial conditions of the system. All analysis of the chaotic system was done numerically. By comparing the results obtained for the two- and three-body systems, it was possible to show that the chaotic systems are characterized not only for being non-linear and showing sensitive dependence on the initial conditions, but also for having a deterministic dynamics.
id SCAR_3d99c7725a00e977a8cafae6bd37a9ad
oai_identifier_str oai:repositorio.ufscar.br:ufscar/16265
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Souza, Jéssica Cristina Leonel deCantão, Renato Fernandeshttp://lattes.cnpq.br/3016268479248046http://lattes.cnpq.br/89198316057909366b54932e-d7c9-4438-ad64-c417f9ee7dd42022-06-10T00:18:28Z2022-06-10T00:18:28Z2022-04-27SOUZA, Jéssica Cristina Leonel de. Problema de N Corpos e sua Relação com o Caos. 2022. Trabalho de Conclusão de Curso (Graduação em Física) – Universidade Federal de São Carlos, Sorocaba, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16265.https://repositorio.ufscar.br/handle/ufscar/16265Daily experience shows that nature is made up of countless bodies interacting with each other, macroscopic, like planets and stars, or microscopic, such as atoms and molecules. The laws of motion established by Isaac Newton in the 17th century were developed to explain how forces act on bodies to produce motion and how bodies interact with each other. Newton was the first to formally solve the problem of N = 2 massive bodies moving in three-dimensional space, with their initial positions and velocities known, and interacting with each other under the exclusive action of gravity. The universal gravitational law was successfully applied to solve this problem, prooving the three laws of Kepler, which were established for the description of the motion of the planets in the solar system. From this result, Newton naturally extended his analysis to the three-body problem, in order to describe the Earth-Moon-Sun system. However, the problem for N ≥ 3 bodies has become a challenge for humanity, remaining even today without a complete analytical solution, that can provide the trajectories of the system. Nevertheless, restricted solutions of this problem showed that extremely complex dynamics could be observed in simple deterministic systems. These results marked the beginning of the study of chaotic systems. In this work we present how the fundamental properties of these systems can be introduced and discussed from the two-body problem in the context of celestial mechanics. We start with this problem to discuss the basic principles and concepts of Classical Mechanics such as the initial state of a system, its center of mass and the principles of conservation of energy and of angular and linear momenta. These were essential to demonstrate analytically that the trajectories of the system are described by stable and periodic orbits, as established by Kepler’s laws. The emergence of chaos in this system is observed by considering the general three-body problem. The addition of one more body caused the stability and regularity of the trajectories observed in the two-body system to disappear, giving way to irregular, non-periodic and extremely sensitive dependence on the initial conditions of the system. All analysis of the chaotic system was done numerically. By comparing the results obtained for the two- and three-body systems, it was possible to show that the chaotic systems are characterized not only for being non-linear and showing sensitive dependence on the initial conditions, but also for having a deterministic dynamics.A experiência diária nos mostra que a natureza é formada por inúmeros corpos interagindo entre si, sejam estes macroscópicos, como planetas e estrelas, ou microscópicos como átomos e moléculas. As leis de movimento estabelecidas por Isaac Newton no século XVII foram desenvolvidas para explicar como as forças agem sobre os corpos para produzir movimento e como os corpos interagem entre si. Newton foi o primeiro a resolver formalmente o problema de N = 2 corpos massivos movendo-se no espaço tridimensional, com suas posições e velocidades iniciais conhecidas, e interagindo entre si sob a ação exclusiva da gravidade. O sucesso da aplicação de sua lei da gravitação universal para a solução deste problema foi comprovado pela verificação das três leis de Kepler estabelecidas para a descrição do movimento dos planetas no sistema solar. Diante deste resultado, naturalmente Newton estendeu sua análise para o problema de N = 3 corpos, com o intuito de descrever o sistema Terra-Lua-Sol. Contudo, o problema para N ≥ 3 tornou-se um desafio para a humanidade, permanecendo ainda hoje sem uma solução analítica completa que possa fornecer as trajetórias do sistema. Apesar disso, soluções restritas deste problema mostraram que dinâmicas extremamente complexas poderiam ser observadas em sistemas determinísticos simples. Estes resultados marcaram o início do estudo de sistemas caóticos. Neste trabalho apresentamos como as propriedades fundamentais destes sistemas podem ser introduzidas e discutidas a partir do problema de 2 corpos no contexto da mecânica celeste. Iniciamos com este problema para discutir os princípios e conceitos básicos da Mecânica Clássica como o estado inicial de um sistema, seu centro de massa e os princípios de conservação de energia e dos momentos angular e linear. Estes foram essenciais para demonstrar analiticamente que as trajetórias do sistema são descritas por órbitas estáveis e periódicas, conforme estabelecido pelas leis de Kepler. O surgimento do caos neste sistema é observado com a consideração do problema geral de N = 3 corpos. A adição de mais um corpo fez com que a estabilidade e a regularidade das trajetórias observadas no sistema de 2 corpos desaparecessem, dando lugar a trajetórias irregulares, não periódicas e extremamente sensíveis à mudanças nas condições iniciais do sistema. Toda a análise do sistema caótico foi feita numericamente. Pela comparação dos resultados obtidos para o sistema de 2 e 3 corpos foi possível mostrar que os sistemas caóticos são caracterizados não só por serem não lineares e exibirem sensibilidade às suas condições iniciais, mas também por possuírem uma dinâmica determinística.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus SorocabaFísica - FL-SoUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessProblema de 2 corposProblema de 3 corposDinâmica caóticaDeterminismoTwo-body problemThree-body problemChaotic dynamicsDeterminismCIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL::FISICA CLASSICA E FISICA QUANTICA; MECANICA E CAMPOSCIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERALProblema de N Corpos e sua Relação com o CaosThe N-Body Problem and its Relation with Chaosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis60060009f27e55-8b8f-4c9e-ba36-270a982f330areponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTCC_Jéssica_Leonel.pdfTCC_Jéssica_Leonel.pdfTexto completo do Trabalho de Conclusão de Cursoapplication/pdf8069047https://repositorio.ufscar.br/bitstream/ufscar/16265/1/TCC_J%c3%a9ssica_Leonel.pdf56519f1b3a2d43dd8a69885d42c0bfa4MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/16265/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52TEXTTCC_Jéssica_Leonel.pdf.txtTCC_Jéssica_Leonel.pdf.txtExtracted texttext/plain94462https://repositorio.ufscar.br/bitstream/ufscar/16265/3/TCC_J%c3%a9ssica_Leonel.pdf.txt404e9af2ee287547850949b740a07f4fMD53THUMBNAILTCC_Jéssica_Leonel.pdf.jpgTCC_Jéssica_Leonel.pdf.jpgIM Thumbnailimage/jpeg6442https://repositorio.ufscar.br/bitstream/ufscar/16265/4/TCC_J%c3%a9ssica_Leonel.pdf.jpgb3df3a7a688d72c8a74f0c01e49a4b75MD54ufscar/162652023-09-18 18:32:19.632oai:repositorio.ufscar.br:ufscar/16265Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:19Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Problema de N Corpos e sua Relação com o Caos
dc.title.alternative.eng.fl_str_mv The N-Body Problem and its Relation with Chaos
title Problema de N Corpos e sua Relação com o Caos
spellingShingle Problema de N Corpos e sua Relação com o Caos
Souza, Jéssica Cristina Leonel de
Problema de 2 corpos
Problema de 3 corpos
Dinâmica caótica
Determinismo
Two-body problem
Three-body problem
Chaotic dynamics
Determinism
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL::FISICA CLASSICA E FISICA QUANTICA; MECANICA E CAMPOS
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL
title_short Problema de N Corpos e sua Relação com o Caos
title_full Problema de N Corpos e sua Relação com o Caos
title_fullStr Problema de N Corpos e sua Relação com o Caos
title_full_unstemmed Problema de N Corpos e sua Relação com o Caos
title_sort Problema de N Corpos e sua Relação com o Caos
author Souza, Jéssica Cristina Leonel de
author_facet Souza, Jéssica Cristina Leonel de
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/8919831605790936
dc.contributor.author.fl_str_mv Souza, Jéssica Cristina Leonel de
dc.contributor.advisor1.fl_str_mv Cantão, Renato Fernandes
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3016268479248046
dc.contributor.authorID.fl_str_mv 6b54932e-d7c9-4438-ad64-c417f9ee7dd4
contributor_str_mv Cantão, Renato Fernandes
dc.subject.por.fl_str_mv Problema de 2 corpos
Problema de 3 corpos
Dinâmica caótica
Determinismo
topic Problema de 2 corpos
Problema de 3 corpos
Dinâmica caótica
Determinismo
Two-body problem
Three-body problem
Chaotic dynamics
Determinism
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL::FISICA CLASSICA E FISICA QUANTICA; MECANICA E CAMPOS
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL
dc.subject.eng.fl_str_mv Two-body problem
Three-body problem
Chaotic dynamics
Determinism
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL::FISICA CLASSICA E FISICA QUANTICA; MECANICA E CAMPOS
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL
description Daily experience shows that nature is made up of countless bodies interacting with each other, macroscopic, like planets and stars, or microscopic, such as atoms and molecules. The laws of motion established by Isaac Newton in the 17th century were developed to explain how forces act on bodies to produce motion and how bodies interact with each other. Newton was the first to formally solve the problem of N = 2 massive bodies moving in three-dimensional space, with their initial positions and velocities known, and interacting with each other under the exclusive action of gravity. The universal gravitational law was successfully applied to solve this problem, prooving the three laws of Kepler, which were established for the description of the motion of the planets in the solar system. From this result, Newton naturally extended his analysis to the three-body problem, in order to describe the Earth-Moon-Sun system. However, the problem for N ≥ 3 bodies has become a challenge for humanity, remaining even today without a complete analytical solution, that can provide the trajectories of the system. Nevertheless, restricted solutions of this problem showed that extremely complex dynamics could be observed in simple deterministic systems. These results marked the beginning of the study of chaotic systems. In this work we present how the fundamental properties of these systems can be introduced and discussed from the two-body problem in the context of celestial mechanics. We start with this problem to discuss the basic principles and concepts of Classical Mechanics such as the initial state of a system, its center of mass and the principles of conservation of energy and of angular and linear momenta. These were essential to demonstrate analytically that the trajectories of the system are described by stable and periodic orbits, as established by Kepler’s laws. The emergence of chaos in this system is observed by considering the general three-body problem. The addition of one more body caused the stability and regularity of the trajectories observed in the two-body system to disappear, giving way to irregular, non-periodic and extremely sensitive dependence on the initial conditions of the system. All analysis of the chaotic system was done numerically. By comparing the results obtained for the two- and three-body systems, it was possible to show that the chaotic systems are characterized not only for being non-linear and showing sensitive dependence on the initial conditions, but also for having a deterministic dynamics.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-06-10T00:18:28Z
dc.date.available.fl_str_mv 2022-06-10T00:18:28Z
dc.date.issued.fl_str_mv 2022-04-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA, Jéssica Cristina Leonel de. Problema de N Corpos e sua Relação com o Caos. 2022. Trabalho de Conclusão de Curso (Graduação em Física) – Universidade Federal de São Carlos, Sorocaba, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16265.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/16265
identifier_str_mv SOUZA, Jéssica Cristina Leonel de. Problema de N Corpos e sua Relação com o Caos. 2022. Trabalho de Conclusão de Curso (Graduação em Física) – Universidade Federal de São Carlos, Sorocaba, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16265.
url https://repositorio.ufscar.br/handle/ufscar/16265
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 09f27e55-8b8f-4c9e-ba36-270a982f330a
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus Sorocaba
Física - FL-So
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus Sorocaba
Física - FL-So
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/16265/1/TCC_J%c3%a9ssica_Leonel.pdf
https://repositorio.ufscar.br/bitstream/ufscar/16265/2/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/16265/3/TCC_J%c3%a9ssica_Leonel.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/16265/4/TCC_J%c3%a9ssica_Leonel.pdf.jpg
bitstream.checksum.fl_str_mv 56519f1b3a2d43dd8a69885d42c0bfa4
e39d27027a6cc9cb039ad269a5db8e34
404e9af2ee287547850949b740a07f4f
b3df3a7a688d72c8a74f0c01e49a4b75
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136407941054464