Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/15158 |
Resumo: | The integrated production of different bioproducts has been considered essential to make biorefineries economically viable. Among the bioproducts, cellulose nanomaterials (CNs) have attracted significant attention due to their attractive properties and wide spectrum of applications. The use of enzymes to isolate cellulose nanomaterials have gained growing interests mainly associated with the milder operational conditions and the selectivity and specificity of these biocatalysts. However, the available commercial enzymatic preparations are not optimized for this purpose yet. Besides, exploiting agro-industrial residues as feedstock to nanomaterials production is another advantageous strategy from environmental and economic point of views. Within this context, cellulose nanomaterials were isolated through enzymatic and mechanical routes for applications in manufacture of hydrogels. Enzymes were produced by Aspergillus niger under solid-state fermentation and applied to obtain the CNs via enzymatic hydrolysis followed by sonication using eucalyptus cellulose pulp as a model feedstock. The condition that resulted in the highest yield of cellulose nanocrystals isolation was determined through central composite rotational design and the nanomaterials presented high crystallinity index and good thermal stability. The ginger residue was used as feedstock to obtain cellulose nanofibrils (CNFs) by mechanical treatment and applied to prepare hydrogels through vacuum-assisted filtration. The hydrogels presented transparency, biocompatibility, tunable liquid absorption, flexibility combined with good mechanical stability in moist conditions, and antimicrobial performance showing to be promising materials for wound dressing applications. In the final part of the thesis, cellulose nanomaterials produced with commercial and non-commercial enzymes were incorporated into gelatin-based hydrogels which were prepared by solvent casting using tannic acid as crosslinker and ginger essential oil to increase the antimicrobial properties. The hydrogels inhibited the growth of Staphylococcus aureus and Escherichia coli and the cellulose nanomaterials obtained with non-commercial enzymes better contributed to their structural integrity. These results provided a proof of concept that cellulose nanomaterials can be efficiently obtained using non-commercial enzymes and applied in hydrogel manufacture. Meanwhile, for an already established route, hydrogels totally based on nanofibrils extracted from ginger showed important properties to be used as wound dressing. |
id |
SCAR_442168d20a752a6b4e06226e83a36dac |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/15158 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Carvalho, Paula Squinca deFarinas, Cristiane Sanchezhttp://lattes.cnpq.br/9933650905615452Badino, Alberto Collihttp://lattes.cnpq.br/6244428434217018http://lattes.cnpq.br/42634687114323399f97e7c8-3b90-4f54-884d-0d24d6f4c80a2021-11-24T19:10:56Z2021-11-24T19:10:56Z2021-11-10CARVALHO, Paula Squinca de. Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels. 2021. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15158.https://repositorio.ufscar.br/handle/ufscar/15158The integrated production of different bioproducts has been considered essential to make biorefineries economically viable. Among the bioproducts, cellulose nanomaterials (CNs) have attracted significant attention due to their attractive properties and wide spectrum of applications. The use of enzymes to isolate cellulose nanomaterials have gained growing interests mainly associated with the milder operational conditions and the selectivity and specificity of these biocatalysts. However, the available commercial enzymatic preparations are not optimized for this purpose yet. Besides, exploiting agro-industrial residues as feedstock to nanomaterials production is another advantageous strategy from environmental and economic point of views. Within this context, cellulose nanomaterials were isolated through enzymatic and mechanical routes for applications in manufacture of hydrogels. Enzymes were produced by Aspergillus niger under solid-state fermentation and applied to obtain the CNs via enzymatic hydrolysis followed by sonication using eucalyptus cellulose pulp as a model feedstock. The condition that resulted in the highest yield of cellulose nanocrystals isolation was determined through central composite rotational design and the nanomaterials presented high crystallinity index and good thermal stability. The ginger residue was used as feedstock to obtain cellulose nanofibrils (CNFs) by mechanical treatment and applied to prepare hydrogels through vacuum-assisted filtration. The hydrogels presented transparency, biocompatibility, tunable liquid absorption, flexibility combined with good mechanical stability in moist conditions, and antimicrobial performance showing to be promising materials for wound dressing applications. In the final part of the thesis, cellulose nanomaterials produced with commercial and non-commercial enzymes were incorporated into gelatin-based hydrogels which were prepared by solvent casting using tannic acid as crosslinker and ginger essential oil to increase the antimicrobial properties. The hydrogels inhibited the growth of Staphylococcus aureus and Escherichia coli and the cellulose nanomaterials obtained with non-commercial enzymes better contributed to their structural integrity. These results provided a proof of concept that cellulose nanomaterials can be efficiently obtained using non-commercial enzymes and applied in hydrogel manufacture. Meanwhile, for an already established route, hydrogels totally based on nanofibrils extracted from ginger showed important properties to be used as wound dressing.A produção integrada de diferentes bioprodutos tem sido considerada essencial para tornar as biorrefinarias economicamente viáveis, com destaque para os nanomateriais de celulose (NCs) dadas suas propriedades atrativas e amplo espectro de aplicações. É crescente o interesse no uso de enzimas para isolar nanomateriais de celulose devido à suas seletividade e especificidade, além das brandas condições operacionais. Contudo, as preparações enzimáticas comerciais disponíveis atualmente ainda não estão otimizadas para este fim. Outra estratégia vantajosa do ponto de vista econômico e ambiental é a exploração de resíduos agroindustriais como matérias-primas para obtenção desses nanomateriais. Neste trabalho, nanomateriais de celulose foram isolados por meio de rotas enzimáticas e mecânicas e usados na fabricação de hidrogéis. Enzimas foram produzidas por Aspergillus niger sob fermentação em estado sólido e utilizadas para obtenção de NCs através de hidrólise enzimática seguida de sonicação utilizando polpa de celulose de eucalipto como substrato modelo. A condição de maior rendimento foi determinada através de planejamento composto central rotacional e resultou em nanocristais de celulose com elevado índice de cristalinidade e boa estabilidade térmica. Resíduo de gengibre foi utilizado como matéria-prima para a obtenção de nanofibrilas de celulose (NFCs) por tratamento mecânico e aplicadas na preparação de hidrogéis obtidos por filtração à vácuo. Os hidrogéis apresentaram transparência, biocompatibilidade, ajustável capacidade de absorção de líquidos, boa flexibilidade e estabilidade mecânica em condições úmidas além de propriedades antimicrobianas, mostrando-se promissores para aplicações como curativos. Na parte final da tese, NCs produzidos utilizando enzimas comerciais e não comerciais foram incorporados a hidrogéis preparados por solvent casting utilizando gelatina, ácido tânico como reticulador e óleo essencial de gengibre para aumentar as propriedades antimicrobianas. Os hidrogéis apresentaram atividade antibacteriana inibindo o crescimento de Staphylococcus aureus e de Escherichia coli e os NCs obtidos com enzimas não comerciais ofereceram melhor contribuição para a integridade estrutural. Tais resultados oferecem uma prova de conceito de que nanomateriais de celulose podem ser eficientemente obtidos utilizando de enzimas não comerciais e aplicados na fabricação de hidrogel. Já para a estabelecida rota mecânica, foi demonstrado que hidrogéis obtidos exclusivamente a partir de nanofibras de gengibre apresentaram propriedades importantes que possibilitam sua aplicação como curativos.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)168232/2017-0, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)88887.465611/2019-00, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDesenvolvimento sustentávelHidrólise enzimáticaEnzimas não comerciaisGengibreHidrogéisSustainable developmentEnzymatic hydrolysisNon-commercial enzymesGingerHydrogelsENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICAENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICACellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogelsNanomateriais celulósicos isolados via rotas enzimática e mecânica para aplicação em hidrogéisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600dd9ceb6c-d509-421a-a31e-bcb55bb21e02reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTesePSC_VF.pdfTesePSC_VF.pdfTeseapplication/pdf27483166https://repositorio.ufscar.br/bitstream/ufscar/15158/1/TesePSC_VF.pdf8872a07346bd15c22dcd69e8bcf9b022MD51Carta comprovante versão final da tese.pdfCarta comprovante versão final da tese.pdfapplication/pdf79892https://repositorio.ufscar.br/bitstream/ufscar/15158/3/Carta%20comprovante%20vers%c3%a3o%20final%20da%20tese.pdfa313202709bb92fd310a7b74d36f2e53MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/15158/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTTesePSC_VF.pdf.txtTesePSC_VF.pdf.txtExtracted texttext/plain482052https://repositorio.ufscar.br/bitstream/ufscar/15158/5/TesePSC_VF.pdf.txt34235a9465bd456240a9abf31b7d922fMD55Carta comprovante versão final da tese.pdf.txtCarta comprovante versão final da tese.pdf.txtExtracted texttext/plain994https://repositorio.ufscar.br/bitstream/ufscar/15158/7/Carta%20comprovante%20vers%c3%a3o%20final%20da%20tese.pdf.txtb525f0bdcf14855d031510d2f91a53aeMD57THUMBNAILTesePSC_VF.pdf.jpgTesePSC_VF.pdf.jpgIM Thumbnailimage/jpeg6485https://repositorio.ufscar.br/bitstream/ufscar/15158/6/TesePSC_VF.pdf.jpg305598bc74896081919e01c27cefda46MD56Carta comprovante versão final da tese.pdf.jpgCarta comprovante versão final da tese.pdf.jpgIM Thumbnailimage/jpeg5943https://repositorio.ufscar.br/bitstream/ufscar/15158/8/Carta%20comprovante%20vers%c3%a3o%20final%20da%20tese.pdf.jpg231253fe90fdcacb8115018f238f4c2eMD58ufscar/151582023-09-18 18:32:20.67oai:repositorio.ufscar.br:ufscar/15158Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:20Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels |
dc.title.alternative.por.fl_str_mv |
Nanomateriais celulósicos isolados via rotas enzimática e mecânica para aplicação em hidrogéis |
title |
Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels |
spellingShingle |
Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels Carvalho, Paula Squinca de Desenvolvimento sustentável Hidrólise enzimática Enzimas não comerciais Gengibre Hidrogéis Sustainable development Enzymatic hydrolysis Non-commercial enzymes Ginger Hydrogels ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA |
title_short |
Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels |
title_full |
Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels |
title_fullStr |
Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels |
title_full_unstemmed |
Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels |
title_sort |
Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels |
author |
Carvalho, Paula Squinca de |
author_facet |
Carvalho, Paula Squinca de |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/4263468711432339 |
dc.contributor.author.fl_str_mv |
Carvalho, Paula Squinca de |
dc.contributor.advisor1.fl_str_mv |
Farinas, Cristiane Sanchez |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9933650905615452 |
dc.contributor.advisor-co1.fl_str_mv |
Badino, Alberto Colli |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/6244428434217018 |
dc.contributor.authorID.fl_str_mv |
9f97e7c8-3b90-4f54-884d-0d24d6f4c80a |
contributor_str_mv |
Farinas, Cristiane Sanchez Badino, Alberto Colli |
dc.subject.por.fl_str_mv |
Desenvolvimento sustentável Hidrólise enzimática Enzimas não comerciais |
topic |
Desenvolvimento sustentável Hidrólise enzimática Enzimas não comerciais Gengibre Hidrogéis Sustainable development Enzymatic hydrolysis Non-commercial enzymes Ginger Hydrogels ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA |
dc.subject.eng.fl_str_mv |
Gengibre Hidrogéis Sustainable development Enzymatic hydrolysis Non-commercial enzymes Ginger Hydrogels |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA |
description |
The integrated production of different bioproducts has been considered essential to make biorefineries economically viable. Among the bioproducts, cellulose nanomaterials (CNs) have attracted significant attention due to their attractive properties and wide spectrum of applications. The use of enzymes to isolate cellulose nanomaterials have gained growing interests mainly associated with the milder operational conditions and the selectivity and specificity of these biocatalysts. However, the available commercial enzymatic preparations are not optimized for this purpose yet. Besides, exploiting agro-industrial residues as feedstock to nanomaterials production is another advantageous strategy from environmental and economic point of views. Within this context, cellulose nanomaterials were isolated through enzymatic and mechanical routes for applications in manufacture of hydrogels. Enzymes were produced by Aspergillus niger under solid-state fermentation and applied to obtain the CNs via enzymatic hydrolysis followed by sonication using eucalyptus cellulose pulp as a model feedstock. The condition that resulted in the highest yield of cellulose nanocrystals isolation was determined through central composite rotational design and the nanomaterials presented high crystallinity index and good thermal stability. The ginger residue was used as feedstock to obtain cellulose nanofibrils (CNFs) by mechanical treatment and applied to prepare hydrogels through vacuum-assisted filtration. The hydrogels presented transparency, biocompatibility, tunable liquid absorption, flexibility combined with good mechanical stability in moist conditions, and antimicrobial performance showing to be promising materials for wound dressing applications. In the final part of the thesis, cellulose nanomaterials produced with commercial and non-commercial enzymes were incorporated into gelatin-based hydrogels which were prepared by solvent casting using tannic acid as crosslinker and ginger essential oil to increase the antimicrobial properties. The hydrogels inhibited the growth of Staphylococcus aureus and Escherichia coli and the cellulose nanomaterials obtained with non-commercial enzymes better contributed to their structural integrity. These results provided a proof of concept that cellulose nanomaterials can be efficiently obtained using non-commercial enzymes and applied in hydrogel manufacture. Meanwhile, for an already established route, hydrogels totally based on nanofibrils extracted from ginger showed important properties to be used as wound dressing. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-11-24T19:10:56Z |
dc.date.available.fl_str_mv |
2021-11-24T19:10:56Z |
dc.date.issued.fl_str_mv |
2021-11-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CARVALHO, Paula Squinca de. Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels. 2021. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15158. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/15158 |
identifier_str_mv |
CARVALHO, Paula Squinca de. Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels. 2021. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15158. |
url |
https://repositorio.ufscar.br/handle/ufscar/15158 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
dd9ceb6c-d509-421a-a31e-bcb55bb21e02 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química - PPGEQ |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/15158/1/TesePSC_VF.pdf https://repositorio.ufscar.br/bitstream/ufscar/15158/3/Carta%20comprovante%20vers%c3%a3o%20final%20da%20tese.pdf https://repositorio.ufscar.br/bitstream/ufscar/15158/4/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/15158/5/TesePSC_VF.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/15158/7/Carta%20comprovante%20vers%c3%a3o%20final%20da%20tese.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/15158/6/TesePSC_VF.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/15158/8/Carta%20comprovante%20vers%c3%a3o%20final%20da%20tese.pdf.jpg |
bitstream.checksum.fl_str_mv |
8872a07346bd15c22dcd69e8bcf9b022 a313202709bb92fd310a7b74d36f2e53 e39d27027a6cc9cb039ad269a5db8e34 34235a9465bd456240a9abf31b7d922f b525f0bdcf14855d031510d2f91a53ae 305598bc74896081919e01c27cefda46 231253fe90fdcacb8115018f238f4c2e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715639136681984 |