Espaços de Hardy e compacidade compensada
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/5906 |
Resumo: | This work is divided into two parts. In the first part, our goal is to present the theory of Hardy Spaces Hp(Rn), which coincides with the Lebesgue space Lp(Rn) for p > 1, is strictly contained in Lp(Rn) if p = 1, and is a space of distributions when 0 < p < 1. When 0 < p ^ 1, the Hardy spaces offers a better treatment involving harmonic analysis than the Lp spaces. Among other results, we prove the maximal characterization theorem of Hp, which gives equivalent definitions of Hp, based on different maximal functions. We will proof the atomic decom¬position theorem for Hp, which allow decompose any distribution in Hp to be written as a sum of Hp-atoms (measurable functions that satisfy certain properties). In this step, we use the strongly the of Whitney decomposition and generalized Calderon-Zygmund decomposition. In the second part, as a application, we will prove that nonlinear quantities (such as the Jacobian, divergent and rotational defined in Rn) identied by the compensated compactness theory belong, under natural conditions, the Hardy spaces. To this end, in addition to the results seen in the first part, will use the results as Sobolev immersions theorems ans the inequality Sobolev-Poincare. Furthermore, we will use the tings and results related to the context of differential forms. |
id |
SCAR_648dd4b11511128660b5105819674060 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/5906 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Souza, Osmar do NascimentoHoepfner, Gustavohttp://lattes.cnpq.br/7742503790793940http://lattes.cnpq.br/983964973357063254026b8c-6671-4098-9086-5154c35876272016-06-02T20:28:30Z2014-08-182016-06-02T20:28:30Z2014-03-13SOUZA, Osmar do Nascimento. Espaços de Hardy e compacidade compensada. 2014. 122 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2014.https://repositorio.ufscar.br/handle/ufscar/5906This work is divided into two parts. In the first part, our goal is to present the theory of Hardy Spaces Hp(Rn), which coincides with the Lebesgue space Lp(Rn) for p > 1, is strictly contained in Lp(Rn) if p = 1, and is a space of distributions when 0 < p < 1. When 0 < p ^ 1, the Hardy spaces offers a better treatment involving harmonic analysis than the Lp spaces. Among other results, we prove the maximal characterization theorem of Hp, which gives equivalent definitions of Hp, based on different maximal functions. We will proof the atomic decom¬position theorem for Hp, which allow decompose any distribution in Hp to be written as a sum of Hp-atoms (measurable functions that satisfy certain properties). In this step, we use the strongly the of Whitney decomposition and generalized Calderon-Zygmund decomposition. In the second part, as a application, we will prove that nonlinear quantities (such as the Jacobian, divergent and rotational defined in Rn) identied by the compensated compactness theory belong, under natural conditions, the Hardy spaces. To this end, in addition to the results seen in the first part, will use the results as Sobolev immersions theorems ans the inequality Sobolev-Poincare. Furthermore, we will use the tings and results related to the context of differential forms.Esse trabalho está dividido em duas partes.Na primeira, nosso objetivo e apresentar os espaços de Hardy Hp(Rn), o qual coincide com os espaços Lp(Rn), quando p > 1, esta estritamente contido em Lp(Rn) se p = 1, e e um espaço de distribuições quando 0 < p < 1. Quando 0 < p < 1, os espaços de Hardy oferecem um melhor tratamento envolvendo analise harmônica do que os espaços Lp(Rn). Entre outros resultados, provamos o teorema da caracterização maximal de Hp, o qual fornece varias, porem equivalentes, formas de caracterizar Hp, com base em diferentes funcões maximais. Demonstramos o teorema da decomposição atômica para Hp, 0 < p < 1, que permite decompor qualquer distribuição em Hp como soma de Hp-atomos (funções mensuráveis que satisfazem certas propriedades). Nessa etapa, usamos fortemente a de- composição de Whitney e a decomposto de Calderon-Zygmund generalizada. Na segunda parte, como uma aplicação, provamos que quantidades não-lineares (como o jacobiano, divergente e o rotacional definidos em Rn), identificadas pela teoria compacidade compensada pertencem, em condições naturais, aos espaços de Hardy. Para tanto, além dos resultados visto na primeira parte, usamos outros como os Teoremas de Imersões de Sobolev, a desigualdade de Sobolev-Poincaré. Usamos ainda, definições e resultados referentes ao contexto de formas diferenciais.Financiadora de Estudos e Projetosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarBRAnálise harmônicaHardy, Espaços deCompacidade compensadaCaracterizaçao maximal de HpDecomposiçõo atômica de HpHarmonic analysisHardy spaces HpMaximal caracterization of HpAtomic decomposition for HpCompensated compactnessCIENCIAS EXATAS E DA TERRA::MATEMATICAEspaços de Hardy e compacidade compensadainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1-1f9242c44-74f2-4cbb-a126-ba1ee0742cd4info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL6065.pdfapplication/pdf865751https://repositorio.ufscar.br/bitstream/ufscar/5906/1/6065.pdf22466d8659637f2282b6be8b0adb5a33MD51TEXT6065.pdf.txt6065.pdf.txtExtracted texttext/plain0https://repositorio.ufscar.br/bitstream/ufscar/5906/2/6065.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD52THUMBNAIL6065.pdf.jpg6065.pdf.jpgIM Thumbnailimage/jpeg8333https://repositorio.ufscar.br/bitstream/ufscar/5906/3/6065.pdf.jpg14f70e6f066a42dfc956ead2f0587703MD53ufscar/59062023-09-18 18:31:37.144oai:repositorio.ufscar.br:ufscar/5906Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:37Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Espaços de Hardy e compacidade compensada |
title |
Espaços de Hardy e compacidade compensada |
spellingShingle |
Espaços de Hardy e compacidade compensada Souza, Osmar do Nascimento Análise harmônica Hardy, Espaços de Compacidade compensada Caracterizaçao maximal de Hp Decomposiçõo atômica de Hp Harmonic analysis Hardy spaces Hp Maximal caracterization of Hp Atomic decomposition for Hp Compensated compactness CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Espaços de Hardy e compacidade compensada |
title_full |
Espaços de Hardy e compacidade compensada |
title_fullStr |
Espaços de Hardy e compacidade compensada |
title_full_unstemmed |
Espaços de Hardy e compacidade compensada |
title_sort |
Espaços de Hardy e compacidade compensada |
author |
Souza, Osmar do Nascimento |
author_facet |
Souza, Osmar do Nascimento |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/9839649733570632 |
dc.contributor.author.fl_str_mv |
Souza, Osmar do Nascimento |
dc.contributor.advisor1.fl_str_mv |
Hoepfner, Gustavo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7742503790793940 |
dc.contributor.authorID.fl_str_mv |
54026b8c-6671-4098-9086-5154c3587627 |
contributor_str_mv |
Hoepfner, Gustavo |
dc.subject.por.fl_str_mv |
Análise harmônica Hardy, Espaços de Compacidade compensada Caracterizaçao maximal de Hp Decomposiçõo atômica de Hp |
topic |
Análise harmônica Hardy, Espaços de Compacidade compensada Caracterizaçao maximal de Hp Decomposiçõo atômica de Hp Harmonic analysis Hardy spaces Hp Maximal caracterization of Hp Atomic decomposition for Hp Compensated compactness CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Harmonic analysis Hardy spaces Hp Maximal caracterization of Hp Atomic decomposition for Hp Compensated compactness |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
This work is divided into two parts. In the first part, our goal is to present the theory of Hardy Spaces Hp(Rn), which coincides with the Lebesgue space Lp(Rn) for p > 1, is strictly contained in Lp(Rn) if p = 1, and is a space of distributions when 0 < p < 1. When 0 < p ^ 1, the Hardy spaces offers a better treatment involving harmonic analysis than the Lp spaces. Among other results, we prove the maximal characterization theorem of Hp, which gives equivalent definitions of Hp, based on different maximal functions. We will proof the atomic decom¬position theorem for Hp, which allow decompose any distribution in Hp to be written as a sum of Hp-atoms (measurable functions that satisfy certain properties). In this step, we use the strongly the of Whitney decomposition and generalized Calderon-Zygmund decomposition. In the second part, as a application, we will prove that nonlinear quantities (such as the Jacobian, divergent and rotational defined in Rn) identied by the compensated compactness theory belong, under natural conditions, the Hardy spaces. To this end, in addition to the results seen in the first part, will use the results as Sobolev immersions theorems ans the inequality Sobolev-Poincare. Furthermore, we will use the tings and results related to the context of differential forms. |
publishDate |
2014 |
dc.date.available.fl_str_mv |
2014-08-18 2016-06-02T20:28:30Z |
dc.date.issued.fl_str_mv |
2014-03-13 |
dc.date.accessioned.fl_str_mv |
2016-06-02T20:28:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUZA, Osmar do Nascimento. Espaços de Hardy e compacidade compensada. 2014. 122 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2014. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/5906 |
identifier_str_mv |
SOUZA, Osmar do Nascimento. Espaços de Hardy e compacidade compensada. 2014. 122 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2014. |
url |
https://repositorio.ufscar.br/handle/ufscar/5906 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
-1 -1 |
dc.relation.authority.fl_str_mv |
f9242c44-74f2-4cbb-a126-ba1ee0742cd4 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
dc.publisher.initials.fl_str_mv |
UFSCar |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/5906/1/6065.pdf https://repositorio.ufscar.br/bitstream/ufscar/5906/2/6065.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/5906/3/6065.pdf.jpg |
bitstream.checksum.fl_str_mv |
22466d8659637f2282b6be8b0adb5a33 d41d8cd98f00b204e9800998ecf8427e 14f70e6f066a42dfc956ead2f0587703 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715547222704128 |