Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/12378 |
Resumo: | In this work, we are interested in the existence and multiplicity of nontrivial solutions for a class of elliptic problems. The first problem deals with the existence of nontrivial weak solutions to a class of elliptic equations involving a general nonlocal integrodifferential operator $\mathscr{L}_{\mathcal{A}K}$ with variable exponent, two real parameters, and two weight functions, which can be sign-changing in a smooth bounded domain. Considering different situations related to the growth of nonlinearities involved in problem, we prove the existence of two distinct nontrivial solutions for the case of constant exponents and the existence of a continuous family of eigenvalues in the case of variable exponents. The proofs of the main results are based on ground state solutions using the Nehari method, Ekeland’s variational principle, and the direct method of the calculus of variations. The second problem deals with the existence and multiplicity of weak solutions involving the same operator $\mathscr{L}_{\mathcal{A}K} $, variable exponents without Ambrosetti and Rabinowitz type growth conditions and a positive real parameter in a smooth bounded domain. Using different versions of the Mountain Pass Theorem, as well as, the Fountain Theorem and Dual Fountain Theorem with Cerami condition, we obtain the existence of weak solutions for problem. Moreover, for the case sublinear, by imposing some additional hypotheses on the nonlinearity, we obtain the existence of infinitely many weak solutions which tend to be zero, in the fractional Sobolev norm, for any positive parameter. |
id |
SCAR_7b52efb675da9c2cc5cab553401fb565 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/12378 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Bonaldo, Lauren Maria MezzomoMiyagaki, Olímpio Hiroshihttp://lattes.cnpq.br/2646698407526867http://lattes.cnpq.br/1942212522412870dd96ab9f-d65e-42c5-938c-ef692f646c322020-03-31T11:07:22Z2020-03-31T11:07:22Z2020-03-16BONALDO, Lauren Maria Mezzomo. Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent. 2020. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12378.https://repositorio.ufscar.br/handle/ufscar/12378In this work, we are interested in the existence and multiplicity of nontrivial solutions for a class of elliptic problems. The first problem deals with the existence of nontrivial weak solutions to a class of elliptic equations involving a general nonlocal integrodifferential operator $\mathscr{L}_{\mathcal{A}K}$ with variable exponent, two real parameters, and two weight functions, which can be sign-changing in a smooth bounded domain. Considering different situations related to the growth of nonlinearities involved in problem, we prove the existence of two distinct nontrivial solutions for the case of constant exponents and the existence of a continuous family of eigenvalues in the case of variable exponents. The proofs of the main results are based on ground state solutions using the Nehari method, Ekeland’s variational principle, and the direct method of the calculus of variations. The second problem deals with the existence and multiplicity of weak solutions involving the same operator $\mathscr{L}_{\mathcal{A}K} $, variable exponents without Ambrosetti and Rabinowitz type growth conditions and a positive real parameter in a smooth bounded domain. Using different versions of the Mountain Pass Theorem, as well as, the Fountain Theorem and Dual Fountain Theorem with Cerami condition, we obtain the existence of weak solutions for problem. Moreover, for the case sublinear, by imposing some additional hypotheses on the nonlinearity, we obtain the existence of infinitely many weak solutions which tend to be zero, in the fractional Sobolev norm, for any positive parameter.Neste trabalho, estamos interessados na existência e multiplicidade de soluções não-triviais para uma classe de problemas elípticos. O primeiro problema trata da existência de soluções fracas não-triviais para uma classe de equações elípticas que envolvem um operador integrodiferencial não-local geral $ \mathscr{L}_{\mathcal{A}K}$ com expoentes variáveis, dois parâmetros reais e duas funções peso que podem mudar de sinal em um domínio suave limitado. Considerando diferentes situações relacionadas ao crescimento das não-linearidades envolvidas no problema, provamos a existência de duas soluções distintas não-triviais para o caso de expoentes constantes e a existência de uma família contínua de autovalores no caso de expoentes variável. As provas dos principais resultados são baseadas em soluções ground state usando o método de Nehari, o princípio variacional de Ekeland e o método direto do cálculo variacional. O segundo problema trata da existência e da multiplicidade de soluções fracas envolvendo o mesmo operador $ \mathscr{L}_{\mathcal{A} K}, $ um parâmetro real positivo e expoentes variáveis sem condições de crescimento do tipo Ambrosetti e Rabinowitz em um domínio suave e limitado. Utilizando diferentes versões do Teorema do Passo da Montanha, bem como o Teorema de Fountain e o Teorema de Dual Fountain com a condição de Cerami, obtemos a existência de soluções fracas para o problema. Além disso, para o caso sublinear, ao impor algumas hipóteses adicionais à não-linearidade, obtemos a existência de infinitas soluções fracas que tendem a ser zero, na norma de Sobolev fracionário, para qualquer parâmetro positivo.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: código de financiamento - 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessNonlocal integrodifferential operatorFractional Sobolev space with variable exponentsVariational methodsCIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAISExistence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponentExistência e multiplicidade de soluções para uma classe de equações elípticas envolvendo um operador integrodiferencial não local com expoente variávelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600fe700bdf-79c8-4fee-9915-d5097b2b2888reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese_Bonaldo.LM.M.pdfTese_Bonaldo.LM.M.pdfArquivo final da teseapplication/pdf1352831https://repositorio.ufscar.br/bitstream/ufscar/12378/1/Tese_Bonaldo.LM.M.pdf4e7d8d383dd089f71d4c93c4c1eabddfMD51carta-comprovante_pdf.pdfcarta-comprovante_pdf.pdfCarta comprovante do Orientador para versão final da teseapplication/pdf206290https://repositorio.ufscar.br/bitstream/ufscar/12378/2/carta-comprovante_pdf.pdf640ebf136bd7ee0adf1c6e7baaf4393cMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/12378/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTTese_Bonaldo.LM.M.pdf.txtTese_Bonaldo.LM.M.pdf.txtExtracted texttext/plain143885https://repositorio.ufscar.br/bitstream/ufscar/12378/4/Tese_Bonaldo.LM.M.pdf.txt757971ec55f901c1d07d72272b3feae0MD54carta-comprovante_pdf.pdf.txtcarta-comprovante_pdf.pdf.txtExtracted texttext/plain1206https://repositorio.ufscar.br/bitstream/ufscar/12378/6/carta-comprovante_pdf.pdf.txt3812489f90898260972b14a1230339acMD56THUMBNAILTese_Bonaldo.LM.M.pdf.jpgTese_Bonaldo.LM.M.pdf.jpgIM Thumbnailimage/jpeg7171https://repositorio.ufscar.br/bitstream/ufscar/12378/5/Tese_Bonaldo.LM.M.pdf.jpg9c7d4d970345c9dbdaf6194c67f299c4MD55carta-comprovante_pdf.pdf.jpgcarta-comprovante_pdf.pdf.jpgIM Thumbnailimage/jpeg12941https://repositorio.ufscar.br/bitstream/ufscar/12378/7/carta-comprovante_pdf.pdf.jpg8cb00858b8f3c5e6d03be1927eb133dcMD57ufscar/123782023-09-18 18:31:58.094oai:repositorio.ufscar.br:ufscar/12378Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:58Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent |
dc.title.alternative.por.fl_str_mv |
Existência e multiplicidade de soluções para uma classe de equações elípticas envolvendo um operador integrodiferencial não local com expoente variável |
title |
Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent |
spellingShingle |
Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent Bonaldo, Lauren Maria Mezzomo Nonlocal integrodifferential operator Fractional Sobolev space with variable exponents Variational methods CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS |
title_short |
Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent |
title_full |
Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent |
title_fullStr |
Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent |
title_full_unstemmed |
Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent |
title_sort |
Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent |
author |
Bonaldo, Lauren Maria Mezzomo |
author_facet |
Bonaldo, Lauren Maria Mezzomo |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/1942212522412870 |
dc.contributor.author.fl_str_mv |
Bonaldo, Lauren Maria Mezzomo |
dc.contributor.advisor1.fl_str_mv |
Miyagaki, Olímpio Hiroshi |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2646698407526867 |
dc.contributor.authorID.fl_str_mv |
dd96ab9f-d65e-42c5-938c-ef692f646c32 |
contributor_str_mv |
Miyagaki, Olímpio Hiroshi |
dc.subject.eng.fl_str_mv |
Nonlocal integrodifferential operator Fractional Sobolev space with variable exponents Variational methods |
topic |
Nonlocal integrodifferential operator Fractional Sobolev space with variable exponents Variational methods CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS |
description |
In this work, we are interested in the existence and multiplicity of nontrivial solutions for a class of elliptic problems. The first problem deals with the existence of nontrivial weak solutions to a class of elliptic equations involving a general nonlocal integrodifferential operator $\mathscr{L}_{\mathcal{A}K}$ with variable exponent, two real parameters, and two weight functions, which can be sign-changing in a smooth bounded domain. Considering different situations related to the growth of nonlinearities involved in problem, we prove the existence of two distinct nontrivial solutions for the case of constant exponents and the existence of a continuous family of eigenvalues in the case of variable exponents. The proofs of the main results are based on ground state solutions using the Nehari method, Ekeland’s variational principle, and the direct method of the calculus of variations. The second problem deals with the existence and multiplicity of weak solutions involving the same operator $\mathscr{L}_{\mathcal{A}K} $, variable exponents without Ambrosetti and Rabinowitz type growth conditions and a positive real parameter in a smooth bounded domain. Using different versions of the Mountain Pass Theorem, as well as, the Fountain Theorem and Dual Fountain Theorem with Cerami condition, we obtain the existence of weak solutions for problem. Moreover, for the case sublinear, by imposing some additional hypotheses on the nonlinearity, we obtain the existence of infinitely many weak solutions which tend to be zero, in the fractional Sobolev norm, for any positive parameter. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-03-31T11:07:22Z |
dc.date.available.fl_str_mv |
2020-03-31T11:07:22Z |
dc.date.issued.fl_str_mv |
2020-03-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BONALDO, Lauren Maria Mezzomo. Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent. 2020. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12378. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/12378 |
identifier_str_mv |
BONALDO, Lauren Maria Mezzomo. Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent. 2020. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12378. |
url |
https://repositorio.ufscar.br/handle/ufscar/12378 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
fe700bdf-79c8-4fee-9915-d5097b2b2888 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/12378/1/Tese_Bonaldo.LM.M.pdf https://repositorio.ufscar.br/bitstream/ufscar/12378/2/carta-comprovante_pdf.pdf https://repositorio.ufscar.br/bitstream/ufscar/12378/3/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/12378/4/Tese_Bonaldo.LM.M.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/12378/6/carta-comprovante_pdf.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/12378/5/Tese_Bonaldo.LM.M.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/12378/7/carta-comprovante_pdf.pdf.jpg |
bitstream.checksum.fl_str_mv |
4e7d8d383dd089f71d4c93c4c1eabddf 640ebf136bd7ee0adf1c6e7baaf4393c e39d27027a6cc9cb039ad269a5db8e34 757971ec55f901c1d07d72272b3feae0 3812489f90898260972b14a1230339ac 9c7d4d970345c9dbdaf6194c67f299c4 8cb00858b8f3c5e6d03be1927eb133dc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715614418599936 |