Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent

Detalhes bibliográficos
Autor(a) principal: Bonaldo, Lauren Maria Mezzomo
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/12378
Resumo: In this work, we are interested in the existence and multiplicity of nontrivial solutions for a class of elliptic problems. The first problem deals with the existence of nontrivial weak solutions to a class of elliptic equations involving a general nonlocal integrodifferential operator $\mathscr{L}_{\mathcal{A}K}$ with variable exponent, two real parameters, and two weight functions, which can be sign-changing in a smooth bounded domain. Considering different situations related to the growth of nonlinearities involved in problem, we prove the existence of two distinct nontrivial solutions for the case of constant exponents and the existence of a continuous family of eigenvalues in the case of variable exponents. The proofs of the main results are based on ground state solutions using the Nehari method, Ekeland’s variational principle, and the direct method of the calculus of variations. The second problem deals with the existence and multiplicity of weak solutions involving the same operator $\mathscr{L}_{\mathcal{A}K} $, variable exponents without Ambrosetti and Rabinowitz type growth conditions and a positive real parameter in a smooth bounded domain. Using different versions of the Mountain Pass Theorem, as well as, the Fountain Theorem and Dual Fountain Theorem with Cerami condition, we obtain the existence of weak solutions for problem. Moreover, for the case sublinear, by imposing some additional hypotheses on the nonlinearity, we obtain the existence of infinitely many weak solutions which tend to be zero, in the fractional Sobolev norm, for any positive parameter.
id SCAR_7b52efb675da9c2cc5cab553401fb565
oai_identifier_str oai:repositorio.ufscar.br:ufscar/12378
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Bonaldo, Lauren Maria MezzomoMiyagaki, Olímpio Hiroshihttp://lattes.cnpq.br/2646698407526867http://lattes.cnpq.br/1942212522412870dd96ab9f-d65e-42c5-938c-ef692f646c322020-03-31T11:07:22Z2020-03-31T11:07:22Z2020-03-16BONALDO, Lauren Maria Mezzomo. Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent. 2020. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12378.https://repositorio.ufscar.br/handle/ufscar/12378In this work, we are interested in the existence and multiplicity of nontrivial solutions for a class of elliptic problems. The first problem deals with the existence of nontrivial weak solutions to a class of elliptic equations involving a general nonlocal integrodifferential operator $\mathscr{L}_{\mathcal{A}K}$ with variable exponent, two real parameters, and two weight functions, which can be sign-changing in a smooth bounded domain. Considering different situations related to the growth of nonlinearities involved in problem, we prove the existence of two distinct nontrivial solutions for the case of constant exponents and the existence of a continuous family of eigenvalues in the case of variable exponents. The proofs of the main results are based on ground state solutions using the Nehari method, Ekeland’s variational principle, and the direct method of the calculus of variations. The second problem deals with the existence and multiplicity of weak solutions involving the same operator $\mathscr{L}_{\mathcal{A}K} $, variable exponents without Ambrosetti and Rabinowitz type growth conditions and a positive real parameter in a smooth bounded domain. Using different versions of the Mountain Pass Theorem, as well as, the Fountain Theorem and Dual Fountain Theorem with Cerami condition, we obtain the existence of weak solutions for problem. Moreover, for the case sublinear, by imposing some additional hypotheses on the nonlinearity, we obtain the existence of infinitely many weak solutions which tend to be zero, in the fractional Sobolev norm, for any positive parameter.Neste trabalho, estamos interessados na existência e multiplicidade de soluções não-triviais para uma classe de problemas elípticos. O primeiro problema trata da existência de soluções fracas não-triviais para uma classe de equações elípticas que envolvem um operador integrodiferencial não-local geral $ \mathscr{L}_{\mathcal{A}K}$ com expoentes variáveis, dois parâmetros reais e duas funções peso que podem mudar de sinal em um domínio suave limitado. Considerando diferentes situações relacionadas ao crescimento das não-linearidades envolvidas no problema, provamos a existência de duas soluções distintas não-triviais para o caso de expoentes constantes e a existência de uma família contínua de autovalores no caso de expoentes variável. As provas dos principais resultados são baseadas em soluções ground state usando o método de Nehari, o princípio variacional de Ekeland e o método direto do cálculo variacional. O segundo problema trata da existência e da multiplicidade de soluções fracas envolvendo o mesmo operador $ \mathscr{L}_{\mathcal{A} K}, $ um parâmetro real positivo e expoentes variáveis sem condições de crescimento do tipo Ambrosetti e Rabinowitz em um domínio suave e limitado. Utilizando diferentes versões do Teorema do Passo da Montanha, bem como o Teorema de Fountain e o Teorema de Dual Fountain com a condição de Cerami, obtemos a existência de soluções fracas para o problema. Além disso, para o caso sublinear, ao impor algumas hipóteses adicionais à não-linearidade, obtemos a existência de infinitas soluções fracas que tendem a ser zero, na norma de Sobolev fracionário, para qualquer parâmetro positivo.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: código de financiamento - 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessNonlocal integrodifferential operatorFractional Sobolev space with variable exponentsVariational methodsCIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAISExistence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponentExistência e multiplicidade de soluções para uma classe de equações elípticas envolvendo um operador integrodiferencial não local com expoente variávelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600fe700bdf-79c8-4fee-9915-d5097b2b2888reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese_Bonaldo.LM.M.pdfTese_Bonaldo.LM.M.pdfArquivo final da teseapplication/pdf1352831https://repositorio.ufscar.br/bitstream/ufscar/12378/1/Tese_Bonaldo.LM.M.pdf4e7d8d383dd089f71d4c93c4c1eabddfMD51carta-comprovante_pdf.pdfcarta-comprovante_pdf.pdfCarta comprovante do Orientador para versão final da teseapplication/pdf206290https://repositorio.ufscar.br/bitstream/ufscar/12378/2/carta-comprovante_pdf.pdf640ebf136bd7ee0adf1c6e7baaf4393cMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/12378/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTTese_Bonaldo.LM.M.pdf.txtTese_Bonaldo.LM.M.pdf.txtExtracted texttext/plain143885https://repositorio.ufscar.br/bitstream/ufscar/12378/4/Tese_Bonaldo.LM.M.pdf.txt757971ec55f901c1d07d72272b3feae0MD54carta-comprovante_pdf.pdf.txtcarta-comprovante_pdf.pdf.txtExtracted texttext/plain1206https://repositorio.ufscar.br/bitstream/ufscar/12378/6/carta-comprovante_pdf.pdf.txt3812489f90898260972b14a1230339acMD56THUMBNAILTese_Bonaldo.LM.M.pdf.jpgTese_Bonaldo.LM.M.pdf.jpgIM Thumbnailimage/jpeg7171https://repositorio.ufscar.br/bitstream/ufscar/12378/5/Tese_Bonaldo.LM.M.pdf.jpg9c7d4d970345c9dbdaf6194c67f299c4MD55carta-comprovante_pdf.pdf.jpgcarta-comprovante_pdf.pdf.jpgIM Thumbnailimage/jpeg12941https://repositorio.ufscar.br/bitstream/ufscar/12378/7/carta-comprovante_pdf.pdf.jpg8cb00858b8f3c5e6d03be1927eb133dcMD57ufscar/123782023-09-18 18:31:58.094oai:repositorio.ufscar.br:ufscar/12378Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:58Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent
dc.title.alternative.por.fl_str_mv Existência e multiplicidade de soluções para uma classe de equações elípticas envolvendo um operador integrodiferencial não local com expoente variável
title Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent
spellingShingle Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent
Bonaldo, Lauren Maria Mezzomo
Nonlocal integrodifferential operator
Fractional Sobolev space with variable exponents
Variational methods
CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS
title_short Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent
title_full Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent
title_fullStr Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent
title_full_unstemmed Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent
title_sort Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent
author Bonaldo, Lauren Maria Mezzomo
author_facet Bonaldo, Lauren Maria Mezzomo
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1942212522412870
dc.contributor.author.fl_str_mv Bonaldo, Lauren Maria Mezzomo
dc.contributor.advisor1.fl_str_mv Miyagaki, Olímpio Hiroshi
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2646698407526867
dc.contributor.authorID.fl_str_mv dd96ab9f-d65e-42c5-938c-ef692f646c32
contributor_str_mv Miyagaki, Olímpio Hiroshi
dc.subject.eng.fl_str_mv Nonlocal integrodifferential operator
Fractional Sobolev space with variable exponents
Variational methods
topic Nonlocal integrodifferential operator
Fractional Sobolev space with variable exponents
Variational methods
CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS
description In this work, we are interested in the existence and multiplicity of nontrivial solutions for a class of elliptic problems. The first problem deals with the existence of nontrivial weak solutions to a class of elliptic equations involving a general nonlocal integrodifferential operator $\mathscr{L}_{\mathcal{A}K}$ with variable exponent, two real parameters, and two weight functions, which can be sign-changing in a smooth bounded domain. Considering different situations related to the growth of nonlinearities involved in problem, we prove the existence of two distinct nontrivial solutions for the case of constant exponents and the existence of a continuous family of eigenvalues in the case of variable exponents. The proofs of the main results are based on ground state solutions using the Nehari method, Ekeland’s variational principle, and the direct method of the calculus of variations. The second problem deals with the existence and multiplicity of weak solutions involving the same operator $\mathscr{L}_{\mathcal{A}K} $, variable exponents without Ambrosetti and Rabinowitz type growth conditions and a positive real parameter in a smooth bounded domain. Using different versions of the Mountain Pass Theorem, as well as, the Fountain Theorem and Dual Fountain Theorem with Cerami condition, we obtain the existence of weak solutions for problem. Moreover, for the case sublinear, by imposing some additional hypotheses on the nonlinearity, we obtain the existence of infinitely many weak solutions which tend to be zero, in the fractional Sobolev norm, for any positive parameter.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-03-31T11:07:22Z
dc.date.available.fl_str_mv 2020-03-31T11:07:22Z
dc.date.issued.fl_str_mv 2020-03-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BONALDO, Lauren Maria Mezzomo. Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent. 2020. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12378.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/12378
identifier_str_mv BONALDO, Lauren Maria Mezzomo. Existence and multiplicity of solutions for a class of elliptic equations involving nonlocal integrodifferential operator with variable exponent. 2020. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12378.
url https://repositorio.ufscar.br/handle/ufscar/12378
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv fe700bdf-79c8-4fee-9915-d5097b2b2888
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/12378/1/Tese_Bonaldo.LM.M.pdf
https://repositorio.ufscar.br/bitstream/ufscar/12378/2/carta-comprovante_pdf.pdf
https://repositorio.ufscar.br/bitstream/ufscar/12378/3/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/12378/4/Tese_Bonaldo.LM.M.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/12378/6/carta-comprovante_pdf.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/12378/5/Tese_Bonaldo.LM.M.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/12378/7/carta-comprovante_pdf.pdf.jpg
bitstream.checksum.fl_str_mv 4e7d8d383dd089f71d4c93c4c1eabddf
640ebf136bd7ee0adf1c6e7baaf4393c
e39d27027a6cc9cb039ad269a5db8e34
757971ec55f901c1d07d72272b3feae0
3812489f90898260972b14a1230339ac
9c7d4d970345c9dbdaf6194c67f299c4
8cb00858b8f3c5e6d03be1927eb133dc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715614418599936