Modelo alfa normal assimétrico multivariado para redes de classificação

Detalhes bibliográficos
Autor(a) principal: Souza, Anderson Luiz Ara
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/7760
Resumo: In this Thesis we expose the proposition of a new class of probability distributions, the so called alpha skew normal multivariate, an extension of the univariate Normal Alpha distribution, introduced by Elal-Olivero (2010). It can accommodates up to two modes and generalizes the distribution proposed by Elal-Olivero in its marginal components. In addition, we apply this new distribution in the construction of two new data mining methods for classi cation. The procedures developed here increment the predictive ability of the classi cation in the presence of asymmetric and / or bimodal data. The results indicate that the new proposal is signi cantly more appropriate than the usual modeling by classical normal distribution, and is also suitable for datasets without the presence of asymmetry. In this thesis it is shown, using real and synthetic data, the procedures of construction, estimation and validation for the new probability distribution and for probabilistic networks for binary classi cations, particularly for the k-dependence probabilistic networks.
id SCAR_7edfd6ce0edc1d0332d3ccca749c429d
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7760
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Souza, Anderson Luiz AraLouzada Neto, Franciscohttp://lattes.cnpq.br/0994050156415890http://lattes.cnpq.br/89167722909384696a63f76e-3053-486d-bb97-40f7e918a1992016-10-10T18:37:07Z2016-10-10T18:37:07Z2016-03-16SOUZA, Anderson Luiz Ara. Modelo alfa normal assimétrico multivariado para redes de classificação. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7760.https://repositorio.ufscar.br/handle/ufscar/7760In this Thesis we expose the proposition of a new class of probability distributions, the so called alpha skew normal multivariate, an extension of the univariate Normal Alpha distribution, introduced by Elal-Olivero (2010). It can accommodates up to two modes and generalizes the distribution proposed by Elal-Olivero in its marginal components. In addition, we apply this new distribution in the construction of two new data mining methods for classi cation. The procedures developed here increment the predictive ability of the classi cation in the presence of asymmetric and / or bimodal data. The results indicate that the new proposal is signi cantly more appropriate than the usual modeling by classical normal distribution, and is also suitable for datasets without the presence of asymmetry. In this thesis it is shown, using real and synthetic data, the procedures of construction, estimation and validation for the new probability distribution and for probabilistic networks for binary classi cations, particularly for the k-dependence probabilistic networks.Esta Tese expõe a proposição de uma nova classe de distribuições de probabilidade, denominada alfa normal assimetrica multivariada, uma extensão da distribuição alfa normal assimetrica univariada, introduzida por Elal-Olivero (2010). A distribuição proposta e muito flexível, capaz de assumir até duas modas e generaliza a distribuição proposta por Elal-Olivero em suas componentes marginais. Além disso, aplicamos esta nova distribuição na construção de dois novos métodos de data mining para classificação. Os procedimentos aqui desenvolvidos incrementam a capacidade preditiva da classificação na presença de dados assimétricos e/ou bimodais. Os resultados indicam que a nova proposição e significativamente mais apropriada que a modelagem usual por meio da distribuição normal clássica, além de ser igualmente adequada para conjuntos de dados sem a presença de assimetria. Nesta Tese são apresentados, utilizando dados reais e artificiais, os procedimentos de construção, estimação e validação tanto da nova distribuição de probabilidade quanto para as redes para classificações binárias, particularmente para redes probabilísticas de k-dependência.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Estatística - PPGEsUFSCarDistribuição MultivariadaInferência EstatísticaAssimetriaBimodalidadeData miningCIENCIAS EXATAS E DA TERRAModelo alfa normal assimétrico multivariado para redes de classificaçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600d0f3b31a-38c4-4c28-aa5b-837ad377108einfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseALAS.pdfTeseALAS.pdfapplication/pdf2684933https://repositorio.ufscar.br/bitstream/ufscar/7760/1/TeseALAS.pdfca38338bf603ef9390016e59a5ba7e2bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7760/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseALAS.pdf.txtTeseALAS.pdf.txtExtracted texttext/plain102541https://repositorio.ufscar.br/bitstream/ufscar/7760/3/TeseALAS.pdf.txt8a24d9b3187d6ef6d688db7757d45dadMD53THUMBNAILTeseALAS.pdf.jpgTeseALAS.pdf.jpgIM Thumbnailimage/jpeg5043https://repositorio.ufscar.br/bitstream/ufscar/7760/4/TeseALAS.pdf.jpg68d785ab7e772eee258921ea09cebeb5MD54ufscar/77602023-09-18 18:31:40.896oai:repositorio.ufscar.br:ufscar/7760TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:40Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Modelo alfa normal assimétrico multivariado para redes de classificação
title Modelo alfa normal assimétrico multivariado para redes de classificação
spellingShingle Modelo alfa normal assimétrico multivariado para redes de classificação
Souza, Anderson Luiz Ara
Distribuição Multivariada
Inferência Estatística
Assimetria
Bimodalidade
Data mining
CIENCIAS EXATAS E DA TERRA
title_short Modelo alfa normal assimétrico multivariado para redes de classificação
title_full Modelo alfa normal assimétrico multivariado para redes de classificação
title_fullStr Modelo alfa normal assimétrico multivariado para redes de classificação
title_full_unstemmed Modelo alfa normal assimétrico multivariado para redes de classificação
title_sort Modelo alfa normal assimétrico multivariado para redes de classificação
author Souza, Anderson Luiz Ara
author_facet Souza, Anderson Luiz Ara
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/8916772290938469
dc.contributor.author.fl_str_mv Souza, Anderson Luiz Ara
dc.contributor.advisor1.fl_str_mv Louzada Neto, Francisco
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0994050156415890
dc.contributor.authorID.fl_str_mv 6a63f76e-3053-486d-bb97-40f7e918a199
contributor_str_mv Louzada Neto, Francisco
dc.subject.por.fl_str_mv Distribuição Multivariada
Inferência Estatística
Assimetria
Bimodalidade
Data mining
topic Distribuição Multivariada
Inferência Estatística
Assimetria
Bimodalidade
Data mining
CIENCIAS EXATAS E DA TERRA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA
description In this Thesis we expose the proposition of a new class of probability distributions, the so called alpha skew normal multivariate, an extension of the univariate Normal Alpha distribution, introduced by Elal-Olivero (2010). It can accommodates up to two modes and generalizes the distribution proposed by Elal-Olivero in its marginal components. In addition, we apply this new distribution in the construction of two new data mining methods for classi cation. The procedures developed here increment the predictive ability of the classi cation in the presence of asymmetric and / or bimodal data. The results indicate that the new proposal is signi cantly more appropriate than the usual modeling by classical normal distribution, and is also suitable for datasets without the presence of asymmetry. In this thesis it is shown, using real and synthetic data, the procedures of construction, estimation and validation for the new probability distribution and for probabilistic networks for binary classi cations, particularly for the k-dependence probabilistic networks.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-10-10T18:37:07Z
dc.date.available.fl_str_mv 2016-10-10T18:37:07Z
dc.date.issued.fl_str_mv 2016-03-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA, Anderson Luiz Ara. Modelo alfa normal assimétrico multivariado para redes de classificação. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7760.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7760
identifier_str_mv SOUZA, Anderson Luiz Ara. Modelo alfa normal assimétrico multivariado para redes de classificação. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7760.
url https://repositorio.ufscar.br/handle/ufscar/7760
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv d0f3b31a-38c4-4c28-aa5b-837ad377108e
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Estatística - PPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/7760/1/TeseALAS.pdf
https://repositorio.ufscar.br/bitstream/ufscar/7760/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/7760/3/TeseALAS.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/7760/4/TeseALAS.pdf.jpg
bitstream.checksum.fl_str_mv ca38338bf603ef9390016e59a5ba7e2b
ae0398b6f8b235e40ad82cba6c50031d
8a24d9b3187d6ef6d688db7757d45dad
68d785ab7e772eee258921ea09cebeb5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715563466194944