Inteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/6944 |
Resumo: | Biotechnology has presented, in the last years, a rapidly growing development. New biotechnological industrial processes are constantly introduced using different microorganisms and/or enzymes. In this context, the application of process control and optimization techniques has become a need for biotechnological based industry. A technological approach was developed in this dissertation to bioreactor monitoring and control operating in fed-batch model to produce the penicillin enzyme G acilase (PGA) by means of wild cepa of the microorganism Bacillus megaterium. This enzyme is of great industrial importance, being used in the manufacture of semi-synthetic β-lactamic antibiotics. This case study presents the main difficulties faced in the control of biological processes in general: the variability of kinetic parameters and the limited availability of on-line information. In order overcome these difficulties, a unconventional architecture was proposed for a dynamic and adaptive controller using filters, some of them developed in this work, and applying Computational Intelligence (CI) methodologies both in direct and hybrid form. The inference for the microbial concentration (Cx) state variable, a very relevant objective for the logic of the controller, was performed by a softsensor that had as input the filtered values of the sensors signals of the molar fractions of CO2 (yco2) and O2 (yo2) in the effluent gases, of the air feeding flow and of agitation velocity. The respiratory quotient (RQ), calculated from these data, was also used by the algorithms of the software developed here. For the Cx inference, the softsensor employed a hybrid intelligent system (HIS) composed by a neural networks ensemble (RNE) and a fuzzy rule based system (FRBS). These techniques were structured to complement each other such that the RNE infers the microbial concentration (Cx) capturing real-time process data (empirical knowledge) and the FRBS corrects this inferred value using phenomenological based knowledge. The obtained results demonstrated a more robust inference by using this architecture, even supporting some degree of extrapolation. Another important operational parameter is the definition of the initial and final instants of feeding flow of supplemental. In order to meet this goal, a logic was employed that is able to accurately predict this moments, using the CO2 (yco2) molar fraction signal, filters and adaptive fuzzy sets. |
id |
SCAR_817aeddb57c48d016657a18444326c4a |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/6944 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Fernandes, Pedro LuizGiordano, Roberto de Camposhttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4780804Z5http://lattes.cnpq.br/603752619387715200e2738d-fa08-437c-833a-53126341a2f12016-08-17T18:39:29Z2009-10-222016-08-17T18:39:29Z2008-07-11FERNANDES, Pedro Luiz. Inteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA). 2008. 128 f. Dissertação (Mestrado em Multidisciplinar) - Universidade Federal de São Carlos, São Carlos, 2008.https://repositorio.ufscar.br/handle/ufscar/6944Biotechnology has presented, in the last years, a rapidly growing development. New biotechnological industrial processes are constantly introduced using different microorganisms and/or enzymes. In this context, the application of process control and optimization techniques has become a need for biotechnological based industry. A technological approach was developed in this dissertation to bioreactor monitoring and control operating in fed-batch model to produce the penicillin enzyme G acilase (PGA) by means of wild cepa of the microorganism Bacillus megaterium. This enzyme is of great industrial importance, being used in the manufacture of semi-synthetic β-lactamic antibiotics. This case study presents the main difficulties faced in the control of biological processes in general: the variability of kinetic parameters and the limited availability of on-line information. In order overcome these difficulties, a unconventional architecture was proposed for a dynamic and adaptive controller using filters, some of them developed in this work, and applying Computational Intelligence (CI) methodologies both in direct and hybrid form. The inference for the microbial concentration (Cx) state variable, a very relevant objective for the logic of the controller, was performed by a softsensor that had as input the filtered values of the sensors signals of the molar fractions of CO2 (yco2) and O2 (yo2) in the effluent gases, of the air feeding flow and of agitation velocity. The respiratory quotient (RQ), calculated from these data, was also used by the algorithms of the software developed here. For the Cx inference, the softsensor employed a hybrid intelligent system (HIS) composed by a neural networks ensemble (RNE) and a fuzzy rule based system (FRBS). These techniques were structured to complement each other such that the RNE infers the microbial concentration (Cx) capturing real-time process data (empirical knowledge) and the FRBS corrects this inferred value using phenomenological based knowledge. The obtained results demonstrated a more robust inference by using this architecture, even supporting some degree of extrapolation. Another important operational parameter is the definition of the initial and final instants of feeding flow of supplemental. In order to meet this goal, a logic was employed that is able to accurately predict this moments, using the CO2 (yco2) molar fraction signal, filters and adaptive fuzzy sets.A Biotecnologia tem apresentado nos últimos anos um grande e rápido desenvolvimento. Constantemente novos processos biotecnológicos industriais são introduzidos, utilizando diferentes microrganismos e/ou enzimas. Neste contexto, a aplicação de técnicas de otimização e controle de processos tornou-se uma necessidade para a indústria de base biotecnológica. Uma abordagem tecnológica foi desenvolvida nesta dissertação para monitoração e controle de um biorreator, operando em batelada alimentada ( fed-batch ), para produção da enzima penicilina G acilase (PGA) por cepa selvagem do microrganismo Bacillus megaterium Essa enzima é de grande importância industrial, sendo empregada na manufatura de antibióticos β-lactâmicos semi-sintéticos. Este estudo de caso apresenta as principais dificuldades encontradas no controle de processos biológicos em geral: variabilidade dos parâmetros cinéticos e limitada disponibilidade de informação on-line. Para superar estas dificuldades foi proposta uma arquitetura não convencional para um controlador dinâmico e adaptativo utilizando filtros, alguns desenvolvidos neste trabalho, e aplicando metodologias da Inteligência Computacional (IC), tanto de forma direta como híbrida. A inferência da variável de estado concentração microbiana (Cx), objetivo muito importante para a lógica do controlador, foi realizada por um softsensor que teve como entrada valores filtrados dos sinais dos sensores das frações molares de CO2 (yco2) e O2 (yo2) nos gases efluentes, da vazão de alimentação de ar e da velocidade de agitação. O quociente respiratório (RQ), calculado a partir desses dados, foi também utilizado pelos algoritmos do software aqui desenvolvido. Para a inferência de Cx, o softsensor empregou um sistema híbrido inteligente (SHI) composto por um comitê de redes neurais artificiais (CRNAs) e por um sistema fuzzy baseado em regras (SFBR). Essas técnicas foram estruturadas de modo a se complementarem, pois o CRNAs infere a concentração microbiana (Cx) capturando dados do processo em tempo real (conhecimento empírico), e o SFBR corrige esse valor inferido utilizando conhecimento com base fenomenológica. Os resultados obtidos mostraram uma inferência mais robusta ao se utilizar esta arquitetura, suportando inclusive algum grau de extrapolação. Outro parâmetro operacional importante é a definição dos momentos de início e fim da vazão de alimentação de meio suplementar. Para alcançar esse objetivo, foi empregada lógica que foi capaz de prever estes momentos com acuidade, utilizando o sinal de fração molar de CO2 (yco2), filtros e conjuntos fuzzy adaptativos.Financiadora de Estudos e Projetosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Biotecnologia - PPGBiotecUFSCarBRSistemas baseados em conhecimentoAutomaçãoSoftsensorInteligência computacionalFuzzy logicRedes neurais (Computação)OUTROSInteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1-1c1fcc5b7-744a-4626-b2a3-5032f38370e1info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL1987.pdfapplication/pdf5261399https://repositorio.ufscar.br/bitstream/ufscar/6944/1/1987.pdf920886ee9cea1dbc89f0650419ab17e9MD51TEXT1987.pdf.txt1987.pdf.txtExtracted texttext/plain288353https://repositorio.ufscar.br/bitstream/ufscar/6944/2/1987.pdf.txt9443743dca3fa2fa91a46426f5825295MD52THUMBNAIL1987.pdf.jpg1987.pdf.jpgIM Thumbnailimage/jpeg6531https://repositorio.ufscar.br/bitstream/ufscar/6944/3/1987.pdf.jpg80877c7473f83221c8cda3c20f78dcdaMD53ufscar/69442023-09-18 18:31:39.206oai:repositorio.ufscar.br:ufscar/6944Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:39Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Inteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA) |
title |
Inteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA) |
spellingShingle |
Inteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA) Fernandes, Pedro Luiz Sistemas baseados em conhecimento Automação Softsensor Inteligência computacional Fuzzy logic Redes neurais (Computação) OUTROS |
title_short |
Inteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA) |
title_full |
Inteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA) |
title_fullStr |
Inteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA) |
title_full_unstemmed |
Inteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA) |
title_sort |
Inteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA) |
author |
Fernandes, Pedro Luiz |
author_facet |
Fernandes, Pedro Luiz |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/6037526193877152 |
dc.contributor.author.fl_str_mv |
Fernandes, Pedro Luiz |
dc.contributor.advisor1.fl_str_mv |
Giordano, Roberto de Campos |
dc.contributor.advisor1Lattes.fl_str_mv |
http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4780804Z5 |
dc.contributor.authorID.fl_str_mv |
00e2738d-fa08-437c-833a-53126341a2f1 |
contributor_str_mv |
Giordano, Roberto de Campos |
dc.subject.por.fl_str_mv |
Sistemas baseados em conhecimento Automação Softsensor Inteligência computacional Fuzzy logic Redes neurais (Computação) |
topic |
Sistemas baseados em conhecimento Automação Softsensor Inteligência computacional Fuzzy logic Redes neurais (Computação) OUTROS |
dc.subject.cnpq.fl_str_mv |
OUTROS |
description |
Biotechnology has presented, in the last years, a rapidly growing development. New biotechnological industrial processes are constantly introduced using different microorganisms and/or enzymes. In this context, the application of process control and optimization techniques has become a need for biotechnological based industry. A technological approach was developed in this dissertation to bioreactor monitoring and control operating in fed-batch model to produce the penicillin enzyme G acilase (PGA) by means of wild cepa of the microorganism Bacillus megaterium. This enzyme is of great industrial importance, being used in the manufacture of semi-synthetic β-lactamic antibiotics. This case study presents the main difficulties faced in the control of biological processes in general: the variability of kinetic parameters and the limited availability of on-line information. In order overcome these difficulties, a unconventional architecture was proposed for a dynamic and adaptive controller using filters, some of them developed in this work, and applying Computational Intelligence (CI) methodologies both in direct and hybrid form. The inference for the microbial concentration (Cx) state variable, a very relevant objective for the logic of the controller, was performed by a softsensor that had as input the filtered values of the sensors signals of the molar fractions of CO2 (yco2) and O2 (yo2) in the effluent gases, of the air feeding flow and of agitation velocity. The respiratory quotient (RQ), calculated from these data, was also used by the algorithms of the software developed here. For the Cx inference, the softsensor employed a hybrid intelligent system (HIS) composed by a neural networks ensemble (RNE) and a fuzzy rule based system (FRBS). These techniques were structured to complement each other such that the RNE infers the microbial concentration (Cx) capturing real-time process data (empirical knowledge) and the FRBS corrects this inferred value using phenomenological based knowledge. The obtained results demonstrated a more robust inference by using this architecture, even supporting some degree of extrapolation. Another important operational parameter is the definition of the initial and final instants of feeding flow of supplemental. In order to meet this goal, a logic was employed that is able to accurately predict this moments, using the CO2 (yco2) molar fraction signal, filters and adaptive fuzzy sets. |
publishDate |
2008 |
dc.date.issued.fl_str_mv |
2008-07-11 |
dc.date.available.fl_str_mv |
2009-10-22 2016-08-17T18:39:29Z |
dc.date.accessioned.fl_str_mv |
2016-08-17T18:39:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FERNANDES, Pedro Luiz. Inteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA). 2008. 128 f. Dissertação (Mestrado em Multidisciplinar) - Universidade Federal de São Carlos, São Carlos, 2008. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/6944 |
identifier_str_mv |
FERNANDES, Pedro Luiz. Inteligência computacional aplicada à automação de biorreator para produção de Penicilina G Acilase (PGA). 2008. 128 f. Dissertação (Mestrado em Multidisciplinar) - Universidade Federal de São Carlos, São Carlos, 2008. |
url |
https://repositorio.ufscar.br/handle/ufscar/6944 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
-1 -1 |
dc.relation.authority.fl_str_mv |
c1fcc5b7-744a-4626-b2a3-5032f38370e1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Biotecnologia - PPGBiotec |
dc.publisher.initials.fl_str_mv |
UFSCar |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/6944/1/1987.pdf https://repositorio.ufscar.br/bitstream/ufscar/6944/2/1987.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/6944/3/1987.pdf.jpg |
bitstream.checksum.fl_str_mv |
920886ee9cea1dbc89f0650419ab17e9 9443743dca3fa2fa91a46426f5825295 80877c7473f83221c8cda3c20f78dcda |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715555158327296 |