Representação de soluções homogêneas contínuas de campos vetoriais no plano
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/7525 |
Resumo: | In this work we study conditions for the validity of the analogue of Mergelyan’s theorem for continuous solutions of a type of locally integrable vector field. On a domain in the plane, we consider a vector field L that has a first integral on of the form Z(x, t) = x + i'(x, t), where '(x, t) is a smooth, realvalued function. Given a continuous solution u of Lu = 0 on , our first objective was to find conditions on and Z for the validity of the factorization u = U Z, where U 2 C0(Z ()) \ H(int{Z ()}). We will next study this factorization on the closure of . We assume that u 2 C0( ) and that the boundary of is real analytic, then we show in which cases the condition Z(p1) = Z(p2) implies that u(p1) = u(p2), for p1, p2 2 . The cases are divided according to the geometry of the boundary in the points p1 and p2. When is a compact set and u = U Z on , we obtain that u is uniformly approximated by polynomials of Z on . |
id |
SCAR_8c2fd024665a1fbeac4772443f94b9e6 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/7525 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Menis, Alexandra CristinaHounie, Jorge Guillermohttp://lattes.cnpq.br/7302904386484949http://lattes.cnpq.br/39285826982212362ba9e145-ff32-4251-b2e1-995b149b5a522016-09-27T19:50:54Z2016-09-27T19:50:54Z2015-06-11MENIS, Alexandra Cristina. Representação de soluções homogêneas contínuas de campos vetoriais no plano. 2015. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7525.https://repositorio.ufscar.br/handle/ufscar/7525In this work we study conditions for the validity of the analogue of Mergelyan’s theorem for continuous solutions of a type of locally integrable vector field. On a domain in the plane, we consider a vector field L that has a first integral on of the form Z(x, t) = x + i'(x, t), where '(x, t) is a smooth, realvalued function. Given a continuous solution u of Lu = 0 on , our first objective was to find conditions on and Z for the validity of the factorization u = U Z, where U 2 C0(Z ()) \ H(int{Z ()}). We will next study this factorization on the closure of . We assume that u 2 C0( ) and that the boundary of is real analytic, then we show in which cases the condition Z(p1) = Z(p2) implies that u(p1) = u(p2), for p1, p2 2 . The cases are divided according to the geometry of the boundary in the points p1 and p2. When is a compact set and u = U Z on , we obtain that u is uniformly approximated by polynomials of Z on .Neste trabalho estudamos condições para a validade do análogo ao Teorema de Mergelyan para soluções contínuas de um tipo de campo vetorial localmente integrável. Em um domínio no plano, consideramos um campo vetorial L que possui uma integral primeira em da forma Z(x, t) = x + i'(x, t), onde '(x, t) é uma função suave a valores reais. Dada uma solução contínua u de Lu = 0 em, nosso primeiro objetivo foi encontrar condições em e em Z para a validade da fatoração u = U Z, onde U 2 C0(Z()) \ H(int{Z()}). Em seguida estudamos a fatoração no fecho de . Assumimos que u 2 C0() e que a fronteira de é analítica real, então mostramos em quais casos a condição Z(p1) = Z(p2) implica que u(p1) = u(p2), para p1, p2 2 . Os casos são divididos de acordo com a geometria da fronteira nos pontos p1 e p2. Quando é compacto e temos u = U Z em, obtemos que u é uniformemente aproximada por polinômios em Z sobre .Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarEquações diferenciais parciaisCampos vetoriaisTeorema de Baouendi-TrevesCIENCIAS EXATAS E DA TERRA::MATEMATICARepresentação de soluções homogêneas contínuas de campos vetoriais no planoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline60060001addfb3-7010-4770-9d7f-17f1a1d32813info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseACM.pdfTeseACM.pdfapplication/pdf612181https://repositorio.ufscar.br/bitstream/ufscar/7525/1/TeseACM.pdf08e7f6fda44f199df98f9f32d119dc0fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7525/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseACM.pdf.txtTeseACM.pdf.txtExtracted texttext/plain142286https://repositorio.ufscar.br/bitstream/ufscar/7525/3/TeseACM.pdf.txtf768ff8a9eb0f5bfc6b574d29f160774MD53THUMBNAILTeseACM.pdf.jpgTeseACM.pdf.jpgIM Thumbnailimage/jpeg6174https://repositorio.ufscar.br/bitstream/ufscar/7525/4/TeseACM.pdf.jpg787d6a1ee4ec5817d0c9231f137fd9eaMD54ufscar/75252023-09-18 18:31:49.11oai:repositorio.ufscar.br:ufscar/7525TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:49Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Representação de soluções homogêneas contínuas de campos vetoriais no plano |
title |
Representação de soluções homogêneas contínuas de campos vetoriais no plano |
spellingShingle |
Representação de soluções homogêneas contínuas de campos vetoriais no plano Menis, Alexandra Cristina Equações diferenciais parciais Campos vetoriais Teorema de Baouendi-Treves CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Representação de soluções homogêneas contínuas de campos vetoriais no plano |
title_full |
Representação de soluções homogêneas contínuas de campos vetoriais no plano |
title_fullStr |
Representação de soluções homogêneas contínuas de campos vetoriais no plano |
title_full_unstemmed |
Representação de soluções homogêneas contínuas de campos vetoriais no plano |
title_sort |
Representação de soluções homogêneas contínuas de campos vetoriais no plano |
author |
Menis, Alexandra Cristina |
author_facet |
Menis, Alexandra Cristina |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/3928582698221236 |
dc.contributor.author.fl_str_mv |
Menis, Alexandra Cristina |
dc.contributor.advisor1.fl_str_mv |
Hounie, Jorge Guillermo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7302904386484949 |
dc.contributor.authorID.fl_str_mv |
2ba9e145-ff32-4251-b2e1-995b149b5a52 |
contributor_str_mv |
Hounie, Jorge Guillermo |
dc.subject.por.fl_str_mv |
Equações diferenciais parciais Campos vetoriais Teorema de Baouendi-Treves |
topic |
Equações diferenciais parciais Campos vetoriais Teorema de Baouendi-Treves CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
In this work we study conditions for the validity of the analogue of Mergelyan’s theorem for continuous solutions of a type of locally integrable vector field. On a domain in the plane, we consider a vector field L that has a first integral on of the form Z(x, t) = x + i'(x, t), where '(x, t) is a smooth, realvalued function. Given a continuous solution u of Lu = 0 on , our first objective was to find conditions on and Z for the validity of the factorization u = U Z, where U 2 C0(Z ()) \ H(int{Z ()}). We will next study this factorization on the closure of . We assume that u 2 C0( ) and that the boundary of is real analytic, then we show in which cases the condition Z(p1) = Z(p2) implies that u(p1) = u(p2), for p1, p2 2 . The cases are divided according to the geometry of the boundary in the points p1 and p2. When is a compact set and u = U Z on , we obtain that u is uniformly approximated by polynomials of Z on . |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-06-11 |
dc.date.accessioned.fl_str_mv |
2016-09-27T19:50:54Z |
dc.date.available.fl_str_mv |
2016-09-27T19:50:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MENIS, Alexandra Cristina. Representação de soluções homogêneas contínuas de campos vetoriais no plano. 2015. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7525. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/7525 |
identifier_str_mv |
MENIS, Alexandra Cristina. Representação de soluções homogêneas contínuas de campos vetoriais no plano. 2015. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7525. |
url |
https://repositorio.ufscar.br/handle/ufscar/7525 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
01addfb3-7010-4770-9d7f-17f1a1d32813 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/7525/1/TeseACM.pdf https://repositorio.ufscar.br/bitstream/ufscar/7525/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/7525/3/TeseACM.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/7525/4/TeseACM.pdf.jpg |
bitstream.checksum.fl_str_mv |
08e7f6fda44f199df98f9f32d119dc0f ae0398b6f8b235e40ad82cba6c50031d f768ff8a9eb0f5bfc6b574d29f160774 787d6a1ee4ec5817d0c9231f137fd9ea |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715562389307392 |