Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping

Detalhes bibliográficos
Autor(a) principal: Egbon, Osafu Augustine
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/18287
Resumo: In recent years, Spatial statistical models have been gaining rapid attention for solving problems in biological systems due to the improvement in spatial data collection. It has proven extremely important in unveiling spatial patterns and predicting biological processes. This project developed novel parametric and nonparametric Bayesian spatial statistical models to analyze data generated by the muscular responses elicited by Transcranial magnetic stimulation (TMS) pulses induced on the motor cortex of a patient. The goal is to unveil new insights into patients' response patterns important for achieving successful TMS therapy sessions. The first contribution of this project is a systematic review and meta-analysis of the existing Bayesian spatial models that could be considered for analyzing TMS datasets. The second contribution is the development of a user-friendly interface for performing Bayesian spatial modeling for analyzing TMS datasets based on state-of-the-art methods. The interface was documented in an R package, which is publicly available. The third contribution proposed novel spatial statistical models for integrating geostatistical datasets in the form of prior elicitation in a Bayesian analysis. The models were validated using simulation studies, and findings show that naively integrating geostatistical TMS datasets without ensuring the consistency of the data is detrimental to the desired inferences. The final contribution proposed a Bayesian nonparametric spatial model that leads to a non-stationary and non-Gaussian spatial process for the joint modeling of geostatistical TMS datasets. The method used a mixture of Dependent Dirichlet processes to share information across sub-spatial models. Two simulation studies were used to validate the model performance, and the result showed superior performance compared with independent and exchangeable models. The main finding of this work is that the primary motor cortex within the motor cortex region of the brain is responsible for the largest activation in the movement of the right first dorsal interosseous muscle. The finding also showed that the corticospinal excitability decreases with multiple TMS pulses on the motor cortex; however, it begins to regain its excitability strength after several stimulations. The findings from this project could guide TMS practitioners to improve patients' treatment experiences.
id SCAR_8efcf3d8c895a443c159cd7e3b022d22
oai_identifier_str oai:repositorio.ufscar.br:ufscar/18287
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Egbon, Osafu AugustineLouzada Neto, Franciscohttp://lattes.cnpq.br/0994050156415890http://lattes.cnpq.br/2219433204226509https://orcid.org/0000-0002-5890-7954https://orcid.org/0000-0001-7815-955427977231-9206-4142-a0c8-aa3d8a482b4f2023-07-18T18:54:21Z2023-07-18T18:54:21Z2023-07-07EGBON, Osafu Augustine. Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping. 2023. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18287.https://repositorio.ufscar.br/handle/ufscar/18287In recent years, Spatial statistical models have been gaining rapid attention for solving problems in biological systems due to the improvement in spatial data collection. It has proven extremely important in unveiling spatial patterns and predicting biological processes. This project developed novel parametric and nonparametric Bayesian spatial statistical models to analyze data generated by the muscular responses elicited by Transcranial magnetic stimulation (TMS) pulses induced on the motor cortex of a patient. The goal is to unveil new insights into patients' response patterns important for achieving successful TMS therapy sessions. The first contribution of this project is a systematic review and meta-analysis of the existing Bayesian spatial models that could be considered for analyzing TMS datasets. The second contribution is the development of a user-friendly interface for performing Bayesian spatial modeling for analyzing TMS datasets based on state-of-the-art methods. The interface was documented in an R package, which is publicly available. The third contribution proposed novel spatial statistical models for integrating geostatistical datasets in the form of prior elicitation in a Bayesian analysis. The models were validated using simulation studies, and findings show that naively integrating geostatistical TMS datasets without ensuring the consistency of the data is detrimental to the desired inferences. The final contribution proposed a Bayesian nonparametric spatial model that leads to a non-stationary and non-Gaussian spatial process for the joint modeling of geostatistical TMS datasets. The method used a mixture of Dependent Dirichlet processes to share information across sub-spatial models. Two simulation studies were used to validate the model performance, and the result showed superior performance compared with independent and exchangeable models. The main finding of this work is that the primary motor cortex within the motor cortex region of the brain is responsible for the largest activation in the movement of the right first dorsal interosseous muscle. The finding also showed that the corticospinal excitability decreases with multiple TMS pulses on the motor cortex; however, it begins to regain its excitability strength after several stimulations. The findings from this project could guide TMS practitioners to improve patients' treatment experiences.Nos últimos anos, os modelos estatísticos espaciais têm recebido rápida atenção para resolver problemas em sistemas biológicos devido ao aprimoramento na coleta de dados espaciais. Eles têm se mostrado extremamente importantes na revelação de padrões espaciais e na previsão de processos biológicos. Este projeto desenvolveu novos modelos estatísticos espaciais paramétricos e não paramétricos Bayesianos para analisar dados gerados pelas respostas musculares desencadeadas por pulsos de estimulação magnética transcraniana (TMS) induzidos no córtex motor de um paciente. O objetivo é descobrir novas perspectivas sobre os padrões de resposta dos pacientes, um fator importante para o sucesso das sessões de terapia com TMS. A primeira contribuição deste projeto é uma revisão sistemática e meta-análise dos modelos espaciais Bayesianos existentes que podem ser considerados para analisar conjuntos de dados de TMS. A segunda contribuição é o desenvolvimento de uma interface do usuário para realizar modelagem espacial Bayesianas para análise de conjuntos de dados de TMS com base em métodos de última geração. A interface foi documentada em um pacote R, que está disponível publicamente. A terceira contribuição propôs novos modelos estatísticos espaciais para integrar conjuntos de dados geoestatísticos na forma de elicitação de priori em uma análise Bayesiana. Os modelos foram validados usando estudos de simulação, e os resultados mostram que a integração ingênua de conjuntos de dados geoestatísticos de TMS sem garantir a consistência dos dados é prejudicial para as inferências desejadas. A contribuição final propôs um modelo espacial não paramétrico Bayesiano que leva a um processo espacial não estacionário e não gaussiano para a modelagem conjunta de conjuntos de dados geoestatísticos de TMS. O método utilizou uma mistura de processos de Dirichlet dependentes para compartilhar informações entre os submodelos espaciais. Dois estudos de simulação foram usados para validar o desempenho do modelo, e o resultado mostrou desempenho superior em comparação com modelos independentes e intercambiáveis. O principal resultado deste trabalho é que o córtex motor primário, dentro da região do córtex motor do cérebro, é responsável pela maior ativação no movimento do músculo interósseo dorsal do primeiro dedo direito. Os resultados também mostraram que a excitabilidade corticospinal diminui com múltiplos pulsos de TMS no córtex motor; no entanto, começa a recuperar sua força de excitabilidade após várias estimulações. Tais resultados podem orientar os profissionais de TMS a melhorar a experiência de tratamento dos pacientes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarAttribution-NonCommercial 3.0 Brazilhttp://creativecommons.org/licenses/by-nc/3.0/br/info:eu-repo/semantics/openAccessBrain mappingDirichlet processGaussian processPrior elicitationMapeamento cerebralProcesso GaussianoProcesso de DirichletElicitação a prioriMotor cortexCórtex motorCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA EM PROCESSOS ESTOCASTICOSCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICACIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICAENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::FADIGABayesian spatial process models for activation patterns in transcranial magnetic stimulation mappingModelos de processo espacial Bayesiano para padrões de ativação em mapeamento de estimulação magnética transcranianainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600d0f3b31a-38c4-4c28-aa5b-837ad377108ereponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALOsafuRevisedTese_FinalVersion_Ufscar.pdfOsafuRevisedTese_FinalVersion_Ufscar.pdfDoctoral dissertationapplication/pdf9110301https://repositorio.ufscar.br/bitstream/ufscar/18287/1/OsafuRevisedTese_FinalVersion_Ufscar.pdfe4985e614a6c29838fb27073cd11bcf2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8919https://repositorio.ufscar.br/bitstream/ufscar/18287/2/license_rdf7554719e5627c8f97902419c869e4761MD52TEXTOsafuRevisedTese_FinalVersion_Ufscar.pdf.txtOsafuRevisedTese_FinalVersion_Ufscar.pdf.txtExtracted texttext/plain368132https://repositorio.ufscar.br/bitstream/ufscar/18287/3/OsafuRevisedTese_FinalVersion_Ufscar.pdf.txt016368b66d50018e64d7cdf2a55ad8cbMD53ufscar/182872024-05-14 17:38:07.826oai:repositorio.ufscar.br:ufscar/18287Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222024-05-14T17:38:07Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping
dc.title.alternative.por.fl_str_mv Modelos de processo espacial Bayesiano para padrões de ativação em mapeamento de estimulação magnética transcraniana
title Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping
spellingShingle Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping
Egbon, Osafu Augustine
Brain mapping
Dirichlet process
Gaussian process
Prior elicitation
Mapeamento cerebral
Processo Gaussiano
Processo de Dirichlet
Elicitação a priori
Motor cortex
Córtex motor
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA EM PROCESSOS ESTOCASTICOS
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICA
ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::FADIGA
title_short Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping
title_full Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping
title_fullStr Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping
title_full_unstemmed Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping
title_sort Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping
author Egbon, Osafu Augustine
author_facet Egbon, Osafu Augustine
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2219433204226509
dc.contributor.authororcid.por.fl_str_mv https://orcid.org/0000-0002-5890-7954
dc.contributor.advisor1orcid.por.fl_str_mv https://orcid.org/0000-0001-7815-9554
dc.contributor.author.fl_str_mv Egbon, Osafu Augustine
dc.contributor.advisor1.fl_str_mv Louzada Neto, Francisco
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0994050156415890
dc.contributor.authorID.fl_str_mv 27977231-9206-4142-a0c8-aa3d8a482b4f
contributor_str_mv Louzada Neto, Francisco
dc.subject.eng.fl_str_mv Brain mapping
Dirichlet process
Gaussian process
Prior elicitation
topic Brain mapping
Dirichlet process
Gaussian process
Prior elicitation
Mapeamento cerebral
Processo Gaussiano
Processo de Dirichlet
Elicitação a priori
Motor cortex
Córtex motor
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA EM PROCESSOS ESTOCASTICOS
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICA
ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::FADIGA
dc.subject.por.fl_str_mv Mapeamento cerebral
Processo Gaussiano
Processo de Dirichlet
Elicitação a priori
Motor cortex
Córtex motor
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA EM PROCESSOS ESTOCASTICOS
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICA
ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::FADIGA
description In recent years, Spatial statistical models have been gaining rapid attention for solving problems in biological systems due to the improvement in spatial data collection. It has proven extremely important in unveiling spatial patterns and predicting biological processes. This project developed novel parametric and nonparametric Bayesian spatial statistical models to analyze data generated by the muscular responses elicited by Transcranial magnetic stimulation (TMS) pulses induced on the motor cortex of a patient. The goal is to unveil new insights into patients' response patterns important for achieving successful TMS therapy sessions. The first contribution of this project is a systematic review and meta-analysis of the existing Bayesian spatial models that could be considered for analyzing TMS datasets. The second contribution is the development of a user-friendly interface for performing Bayesian spatial modeling for analyzing TMS datasets based on state-of-the-art methods. The interface was documented in an R package, which is publicly available. The third contribution proposed novel spatial statistical models for integrating geostatistical datasets in the form of prior elicitation in a Bayesian analysis. The models were validated using simulation studies, and findings show that naively integrating geostatistical TMS datasets without ensuring the consistency of the data is detrimental to the desired inferences. The final contribution proposed a Bayesian nonparametric spatial model that leads to a non-stationary and non-Gaussian spatial process for the joint modeling of geostatistical TMS datasets. The method used a mixture of Dependent Dirichlet processes to share information across sub-spatial models. Two simulation studies were used to validate the model performance, and the result showed superior performance compared with independent and exchangeable models. The main finding of this work is that the primary motor cortex within the motor cortex region of the brain is responsible for the largest activation in the movement of the right first dorsal interosseous muscle. The finding also showed that the corticospinal excitability decreases with multiple TMS pulses on the motor cortex; however, it begins to regain its excitability strength after several stimulations. The findings from this project could guide TMS practitioners to improve patients' treatment experiences.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-07-18T18:54:21Z
dc.date.available.fl_str_mv 2023-07-18T18:54:21Z
dc.date.issued.fl_str_mv 2023-07-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv EGBON, Osafu Augustine. Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping. 2023. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18287.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/18287
identifier_str_mv EGBON, Osafu Augustine. Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping. 2023. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18287.
url https://repositorio.ufscar.br/handle/ufscar/18287
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv d0f3b31a-38c4-4c28-aa5b-837ad377108e
dc.rights.driver.fl_str_mv Attribution-NonCommercial 3.0 Brazil
http://creativecommons.org/licenses/by-nc/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial 3.0 Brazil
http://creativecommons.org/licenses/by-nc/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/18287/1/OsafuRevisedTese_FinalVersion_Ufscar.pdf
https://repositorio.ufscar.br/bitstream/ufscar/18287/2/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/18287/3/OsafuRevisedTese_FinalVersion_Ufscar.pdf.txt
bitstream.checksum.fl_str_mv e4985e614a6c29838fb27073cd11bcf2
7554719e5627c8f97902419c869e4761
016368b66d50018e64d7cdf2a55ad8cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715666793922560