Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/18287 |
Resumo: | In recent years, Spatial statistical models have been gaining rapid attention for solving problems in biological systems due to the improvement in spatial data collection. It has proven extremely important in unveiling spatial patterns and predicting biological processes. This project developed novel parametric and nonparametric Bayesian spatial statistical models to analyze data generated by the muscular responses elicited by Transcranial magnetic stimulation (TMS) pulses induced on the motor cortex of a patient. The goal is to unveil new insights into patients' response patterns important for achieving successful TMS therapy sessions. The first contribution of this project is a systematic review and meta-analysis of the existing Bayesian spatial models that could be considered for analyzing TMS datasets. The second contribution is the development of a user-friendly interface for performing Bayesian spatial modeling for analyzing TMS datasets based on state-of-the-art methods. The interface was documented in an R package, which is publicly available. The third contribution proposed novel spatial statistical models for integrating geostatistical datasets in the form of prior elicitation in a Bayesian analysis. The models were validated using simulation studies, and findings show that naively integrating geostatistical TMS datasets without ensuring the consistency of the data is detrimental to the desired inferences. The final contribution proposed a Bayesian nonparametric spatial model that leads to a non-stationary and non-Gaussian spatial process for the joint modeling of geostatistical TMS datasets. The method used a mixture of Dependent Dirichlet processes to share information across sub-spatial models. Two simulation studies were used to validate the model performance, and the result showed superior performance compared with independent and exchangeable models. The main finding of this work is that the primary motor cortex within the motor cortex region of the brain is responsible for the largest activation in the movement of the right first dorsal interosseous muscle. The finding also showed that the corticospinal excitability decreases with multiple TMS pulses on the motor cortex; however, it begins to regain its excitability strength after several stimulations. The findings from this project could guide TMS practitioners to improve patients' treatment experiences. |
id |
SCAR_8efcf3d8c895a443c159cd7e3b022d22 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/18287 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Egbon, Osafu AugustineLouzada Neto, Franciscohttp://lattes.cnpq.br/0994050156415890http://lattes.cnpq.br/2219433204226509https://orcid.org/0000-0002-5890-7954https://orcid.org/0000-0001-7815-955427977231-9206-4142-a0c8-aa3d8a482b4f2023-07-18T18:54:21Z2023-07-18T18:54:21Z2023-07-07EGBON, Osafu Augustine. Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping. 2023. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18287.https://repositorio.ufscar.br/handle/ufscar/18287In recent years, Spatial statistical models have been gaining rapid attention for solving problems in biological systems due to the improvement in spatial data collection. It has proven extremely important in unveiling spatial patterns and predicting biological processes. This project developed novel parametric and nonparametric Bayesian spatial statistical models to analyze data generated by the muscular responses elicited by Transcranial magnetic stimulation (TMS) pulses induced on the motor cortex of a patient. The goal is to unveil new insights into patients' response patterns important for achieving successful TMS therapy sessions. The first contribution of this project is a systematic review and meta-analysis of the existing Bayesian spatial models that could be considered for analyzing TMS datasets. The second contribution is the development of a user-friendly interface for performing Bayesian spatial modeling for analyzing TMS datasets based on state-of-the-art methods. The interface was documented in an R package, which is publicly available. The third contribution proposed novel spatial statistical models for integrating geostatistical datasets in the form of prior elicitation in a Bayesian analysis. The models were validated using simulation studies, and findings show that naively integrating geostatistical TMS datasets without ensuring the consistency of the data is detrimental to the desired inferences. The final contribution proposed a Bayesian nonparametric spatial model that leads to a non-stationary and non-Gaussian spatial process for the joint modeling of geostatistical TMS datasets. The method used a mixture of Dependent Dirichlet processes to share information across sub-spatial models. Two simulation studies were used to validate the model performance, and the result showed superior performance compared with independent and exchangeable models. The main finding of this work is that the primary motor cortex within the motor cortex region of the brain is responsible for the largest activation in the movement of the right first dorsal interosseous muscle. The finding also showed that the corticospinal excitability decreases with multiple TMS pulses on the motor cortex; however, it begins to regain its excitability strength after several stimulations. The findings from this project could guide TMS practitioners to improve patients' treatment experiences.Nos últimos anos, os modelos estatísticos espaciais têm recebido rápida atenção para resolver problemas em sistemas biológicos devido ao aprimoramento na coleta de dados espaciais. Eles têm se mostrado extremamente importantes na revelação de padrões espaciais e na previsão de processos biológicos. Este projeto desenvolveu novos modelos estatísticos espaciais paramétricos e não paramétricos Bayesianos para analisar dados gerados pelas respostas musculares desencadeadas por pulsos de estimulação magnética transcraniana (TMS) induzidos no córtex motor de um paciente. O objetivo é descobrir novas perspectivas sobre os padrões de resposta dos pacientes, um fator importante para o sucesso das sessões de terapia com TMS. A primeira contribuição deste projeto é uma revisão sistemática e meta-análise dos modelos espaciais Bayesianos existentes que podem ser considerados para analisar conjuntos de dados de TMS. A segunda contribuição é o desenvolvimento de uma interface do usuário para realizar modelagem espacial Bayesianas para análise de conjuntos de dados de TMS com base em métodos de última geração. A interface foi documentada em um pacote R, que está disponível publicamente. A terceira contribuição propôs novos modelos estatísticos espaciais para integrar conjuntos de dados geoestatísticos na forma de elicitação de priori em uma análise Bayesiana. Os modelos foram validados usando estudos de simulação, e os resultados mostram que a integração ingênua de conjuntos de dados geoestatísticos de TMS sem garantir a consistência dos dados é prejudicial para as inferências desejadas. A contribuição final propôs um modelo espacial não paramétrico Bayesiano que leva a um processo espacial não estacionário e não gaussiano para a modelagem conjunta de conjuntos de dados geoestatísticos de TMS. O método utilizou uma mistura de processos de Dirichlet dependentes para compartilhar informações entre os submodelos espaciais. Dois estudos de simulação foram usados para validar o desempenho do modelo, e o resultado mostrou desempenho superior em comparação com modelos independentes e intercambiáveis. O principal resultado deste trabalho é que o córtex motor primário, dentro da região do córtex motor do cérebro, é responsável pela maior ativação no movimento do músculo interósseo dorsal do primeiro dedo direito. Os resultados também mostraram que a excitabilidade corticospinal diminui com múltiplos pulsos de TMS no córtex motor; no entanto, começa a recuperar sua força de excitabilidade após várias estimulações. Tais resultados podem orientar os profissionais de TMS a melhorar a experiência de tratamento dos pacientes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarAttribution-NonCommercial 3.0 Brazilhttp://creativecommons.org/licenses/by-nc/3.0/br/info:eu-repo/semantics/openAccessBrain mappingDirichlet processGaussian processPrior elicitationMapeamento cerebralProcesso GaussianoProcesso de DirichletElicitação a prioriMotor cortexCórtex motorCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA EM PROCESSOS ESTOCASTICOSCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICACIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICAENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::FADIGABayesian spatial process models for activation patterns in transcranial magnetic stimulation mappingModelos de processo espacial Bayesiano para padrões de ativação em mapeamento de estimulação magnética transcranianainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600d0f3b31a-38c4-4c28-aa5b-837ad377108ereponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALOsafuRevisedTese_FinalVersion_Ufscar.pdfOsafuRevisedTese_FinalVersion_Ufscar.pdfDoctoral dissertationapplication/pdf9110301https://repositorio.ufscar.br/bitstream/ufscar/18287/1/OsafuRevisedTese_FinalVersion_Ufscar.pdfe4985e614a6c29838fb27073cd11bcf2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8919https://repositorio.ufscar.br/bitstream/ufscar/18287/2/license_rdf7554719e5627c8f97902419c869e4761MD52TEXTOsafuRevisedTese_FinalVersion_Ufscar.pdf.txtOsafuRevisedTese_FinalVersion_Ufscar.pdf.txtExtracted texttext/plain368132https://repositorio.ufscar.br/bitstream/ufscar/18287/3/OsafuRevisedTese_FinalVersion_Ufscar.pdf.txt016368b66d50018e64d7cdf2a55ad8cbMD53ufscar/182872024-05-14 17:38:07.826oai:repositorio.ufscar.br:ufscar/18287Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222024-05-14T17:38:07Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping |
dc.title.alternative.por.fl_str_mv |
Modelos de processo espacial Bayesiano para padrões de ativação em mapeamento de estimulação magnética transcraniana |
title |
Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping |
spellingShingle |
Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping Egbon, Osafu Augustine Brain mapping Dirichlet process Gaussian process Prior elicitation Mapeamento cerebral Processo Gaussiano Processo de Dirichlet Elicitação a priori Motor cortex Córtex motor CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA EM PROCESSOS ESTOCASTICOS CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICA ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::FADIGA |
title_short |
Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping |
title_full |
Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping |
title_fullStr |
Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping |
title_full_unstemmed |
Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping |
title_sort |
Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping |
author |
Egbon, Osafu Augustine |
author_facet |
Egbon, Osafu Augustine |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/2219433204226509 |
dc.contributor.authororcid.por.fl_str_mv |
https://orcid.org/0000-0002-5890-7954 |
dc.contributor.advisor1orcid.por.fl_str_mv |
https://orcid.org/0000-0001-7815-9554 |
dc.contributor.author.fl_str_mv |
Egbon, Osafu Augustine |
dc.contributor.advisor1.fl_str_mv |
Louzada Neto, Francisco |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0994050156415890 |
dc.contributor.authorID.fl_str_mv |
27977231-9206-4142-a0c8-aa3d8a482b4f |
contributor_str_mv |
Louzada Neto, Francisco |
dc.subject.eng.fl_str_mv |
Brain mapping Dirichlet process Gaussian process Prior elicitation |
topic |
Brain mapping Dirichlet process Gaussian process Prior elicitation Mapeamento cerebral Processo Gaussiano Processo de Dirichlet Elicitação a priori Motor cortex Córtex motor CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA EM PROCESSOS ESTOCASTICOS CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICA ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::FADIGA |
dc.subject.por.fl_str_mv |
Mapeamento cerebral Processo Gaussiano Processo de Dirichlet Elicitação a priori Motor cortex Córtex motor |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA EM PROCESSOS ESTOCASTICOS CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICA ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::FADIGA |
description |
In recent years, Spatial statistical models have been gaining rapid attention for solving problems in biological systems due to the improvement in spatial data collection. It has proven extremely important in unveiling spatial patterns and predicting biological processes. This project developed novel parametric and nonparametric Bayesian spatial statistical models to analyze data generated by the muscular responses elicited by Transcranial magnetic stimulation (TMS) pulses induced on the motor cortex of a patient. The goal is to unveil new insights into patients' response patterns important for achieving successful TMS therapy sessions. The first contribution of this project is a systematic review and meta-analysis of the existing Bayesian spatial models that could be considered for analyzing TMS datasets. The second contribution is the development of a user-friendly interface for performing Bayesian spatial modeling for analyzing TMS datasets based on state-of-the-art methods. The interface was documented in an R package, which is publicly available. The third contribution proposed novel spatial statistical models for integrating geostatistical datasets in the form of prior elicitation in a Bayesian analysis. The models were validated using simulation studies, and findings show that naively integrating geostatistical TMS datasets without ensuring the consistency of the data is detrimental to the desired inferences. The final contribution proposed a Bayesian nonparametric spatial model that leads to a non-stationary and non-Gaussian spatial process for the joint modeling of geostatistical TMS datasets. The method used a mixture of Dependent Dirichlet processes to share information across sub-spatial models. Two simulation studies were used to validate the model performance, and the result showed superior performance compared with independent and exchangeable models. The main finding of this work is that the primary motor cortex within the motor cortex region of the brain is responsible for the largest activation in the movement of the right first dorsal interosseous muscle. The finding also showed that the corticospinal excitability decreases with multiple TMS pulses on the motor cortex; however, it begins to regain its excitability strength after several stimulations. The findings from this project could guide TMS practitioners to improve patients' treatment experiences. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-07-18T18:54:21Z |
dc.date.available.fl_str_mv |
2023-07-18T18:54:21Z |
dc.date.issued.fl_str_mv |
2023-07-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
EGBON, Osafu Augustine. Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping. 2023. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18287. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/18287 |
identifier_str_mv |
EGBON, Osafu Augustine. Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping. 2023. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18287. |
url |
https://repositorio.ufscar.br/handle/ufscar/18287 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
d0f3b31a-38c4-4c28-aa5b-837ad377108e |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial 3.0 Brazil http://creativecommons.org/licenses/by-nc/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial 3.0 Brazil http://creativecommons.org/licenses/by-nc/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/18287/1/OsafuRevisedTese_FinalVersion_Ufscar.pdf https://repositorio.ufscar.br/bitstream/ufscar/18287/2/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/18287/3/OsafuRevisedTese_FinalVersion_Ufscar.pdf.txt |
bitstream.checksum.fl_str_mv |
e4985e614a6c29838fb27073cd11bcf2 7554719e5627c8f97902419c869e4761 016368b66d50018e64d7cdf2a55ad8cb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715666793922560 |