Bayesian Spatial Process Models for Activation Patterns in Transcranial Magnetic Stimulation Mapping
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-12092023-191817/ |
Resumo: | In recent years, Spatial statistical models have been gaining rapid attention for solving problems in biological systems due to the improvement in spatial data collection. It has proven extremely important in unveiling spatial patterns and predicting biological processes. This project developed novel parametric and nonparametric Bayesian spatial statistical models to analyze data generated by the muscular responses elicited by Transcranial magnetic stimulation (TMS) pulses induced on the motor cortex of a patient. The goal is to unveil new insights into patients response patterns important for achieving successful TMS therapy sessions. The first contribution of this project is a systematic review and meta-analysis of the existing Bayesian spatial models that could be considered for analyzing TMS datasets. The second contribution is the development of a user-friendly interface for performing Bayesian spatial modeling for analyzing TMS datasets based on state-of-the-art methods. The interface was documented in an R package, which is publicly available. The third contribution proposed novel spatial statistical models for integrating geostatistical datasets in the form of prior elicitation in a Bayesian analysis. The models were validated using simulation studies, and findings show that naively integrating geostatistical TMS datasets without ensuring the consistency of the data is detrimental to the desired inferences. The final contribution proposed a Bayesian nonparametric spatial model that leads to a non-stationary and non-Gaussian spatial process for the joint modeling of geostatistical TMS datasets. The method used a mixture of Dependent Dirichlet processes to share information across sub-spatial models. Two simulation studies were used to validate the model performance, and the result showed superior performance compared with independent and exchangeable models. The main finding of this work is that the primary motor cortex within the motor cortex region of the brain is responsible for the largest activation in the movement of the right first dorsal interosseous muscle. The finding also showed that the corticospinal excitability decreases with multiple TMS pulses on the motor cortex; however, it begins to regain its excitability strength after several stimulations. The findings from this project could guide TMS practitioners to improve patients treatment experiences. |
id |
USP_1a9de48bb3551f25da39561e035f0b4a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-12092023-191817 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Bayesian Spatial Process Models for Activation Patterns in Transcranial Magnetic Stimulation MappingModelos de Processo Espacial Bayesiano para Padrões de Ativação em Mapeamento de Estimulação Magnética TranscranianaBrain mappingCórtex MotorDirichlet processElicitação a PrioriGaussian processMapeamento CerebralMotor cortexPrior elicitationProcesso de DirichletProcesso GaussianoIn recent years, Spatial statistical models have been gaining rapid attention for solving problems in biological systems due to the improvement in spatial data collection. It has proven extremely important in unveiling spatial patterns and predicting biological processes. This project developed novel parametric and nonparametric Bayesian spatial statistical models to analyze data generated by the muscular responses elicited by Transcranial magnetic stimulation (TMS) pulses induced on the motor cortex of a patient. The goal is to unveil new insights into patients response patterns important for achieving successful TMS therapy sessions. The first contribution of this project is a systematic review and meta-analysis of the existing Bayesian spatial models that could be considered for analyzing TMS datasets. The second contribution is the development of a user-friendly interface for performing Bayesian spatial modeling for analyzing TMS datasets based on state-of-the-art methods. The interface was documented in an R package, which is publicly available. The third contribution proposed novel spatial statistical models for integrating geostatistical datasets in the form of prior elicitation in a Bayesian analysis. The models were validated using simulation studies, and findings show that naively integrating geostatistical TMS datasets without ensuring the consistency of the data is detrimental to the desired inferences. The final contribution proposed a Bayesian nonparametric spatial model that leads to a non-stationary and non-Gaussian spatial process for the joint modeling of geostatistical TMS datasets. The method used a mixture of Dependent Dirichlet processes to share information across sub-spatial models. Two simulation studies were used to validate the model performance, and the result showed superior performance compared with independent and exchangeable models. The main finding of this work is that the primary motor cortex within the motor cortex region of the brain is responsible for the largest activation in the movement of the right first dorsal interosseous muscle. The finding also showed that the corticospinal excitability decreases with multiple TMS pulses on the motor cortex; however, it begins to regain its excitability strength after several stimulations. The findings from this project could guide TMS practitioners to improve patients treatment experiences.Nos últimos anos, os modelos estatísticos espaciais têm recebido rápida atenção para resolver problemas em sistemas biológicos devido ao aprimoramento na coleta de dados espaciais. Eles têm se mostrado extremamente importantes na revelação de padrões espaciais e na previsão de processos biológicos. Este projeto desenvolveu novos modelos estatísticos espaciais paramétricos e não paramétricos Bayesianos para analisar dados gerados pelas respostas musculares desencadeadas por pulsos de estimulação magnética transcraniana (TMS) induzidos no córtex motor de um paciente. O objetivo é descobrir novas perspectivas sobre os padrões de resposta dos pacientes, um fator importante para o sucesso das sessões de terapia com TMS. A primeira contribuição deste projeto é uma revisão sistemática e meta-análise dos modelos espaciais Bayesianos existentes que podem ser considerados para analisar conjuntos de dados de TMS. A segunda contribuição é o desenvolvimento de uma interface do usuário para realizar modelagem espacial Bayesianas para análise de conjuntos de dados de TMS com base em métodos de última geração. A interface foi documentada em um pacote R, que está disponível publicamente. A terceira contribuição propôs novos modelos estatísticos espaciais para integrar conjuntos de dados geoestatísticos na forma de elicitação de priori em uma análise Bayesiana. Os modelos foram validados usando estudos de simulação, e os resultados mostram que a integração ingênua de conjuntos de dados geoestatísticos de TMS sem garantir a consistência dos dados é prejudicial para as inferências desejadas. A contribuição final propôs um modelo espacial não paramétrico Bayesiano que leva a um processo espacial não estacionário e não gaussiano para a modelagem conjunta de conjuntos de dados geoestatísticos de TMS. O método utilizou uma mistura de processos de Dirichlet dependentes para compartilhar informações entre os submodelos espaciais. Dois estudos de simulação foram usados para validar o desempenho do modelo, e o resultado mostrou desempenho superior em comparação com modelos independentes e intercambiáveis. O principal resultado deste trabalho é que o córtex motor primário, dentro da região do córtex motor do cérebro, é responsável pela maior ativação no movimento do músculo interósseo dorsal do primeiro dedo direito. Os resultados também mostraram que a excitabilidade corticospinal diminui com múltiplos pulsos de TMS no córtex motor; no entanto, começa a recuperar sua força de excitabilidade após várias estimulações. Tais resultados podem orientar os profissionais de TMS a melhorar a experiência de tratamento dos pacientes.Biblioteca Digitais de Teses e Dissertações da USPLouzada Neto, FranciscoEgbon, Osafu Augustine2023-07-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-12092023-191817/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-09-12T22:32:02Zoai:teses.usp.br:tde-12092023-191817Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-09-12T22:32:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Bayesian Spatial Process Models for Activation Patterns in Transcranial Magnetic Stimulation Mapping Modelos de Processo Espacial Bayesiano para Padrões de Ativação em Mapeamento de Estimulação Magnética Transcraniana |
title |
Bayesian Spatial Process Models for Activation Patterns in Transcranial Magnetic Stimulation Mapping |
spellingShingle |
Bayesian Spatial Process Models for Activation Patterns in Transcranial Magnetic Stimulation Mapping Egbon, Osafu Augustine Brain mapping Córtex Motor Dirichlet process Elicitação a Priori Gaussian process Mapeamento Cerebral Motor cortex Prior elicitation Processo de Dirichlet Processo Gaussiano |
title_short |
Bayesian Spatial Process Models for Activation Patterns in Transcranial Magnetic Stimulation Mapping |
title_full |
Bayesian Spatial Process Models for Activation Patterns in Transcranial Magnetic Stimulation Mapping |
title_fullStr |
Bayesian Spatial Process Models for Activation Patterns in Transcranial Magnetic Stimulation Mapping |
title_full_unstemmed |
Bayesian Spatial Process Models for Activation Patterns in Transcranial Magnetic Stimulation Mapping |
title_sort |
Bayesian Spatial Process Models for Activation Patterns in Transcranial Magnetic Stimulation Mapping |
author |
Egbon, Osafu Augustine |
author_facet |
Egbon, Osafu Augustine |
author_role |
author |
dc.contributor.none.fl_str_mv |
Louzada Neto, Francisco |
dc.contributor.author.fl_str_mv |
Egbon, Osafu Augustine |
dc.subject.por.fl_str_mv |
Brain mapping Córtex Motor Dirichlet process Elicitação a Priori Gaussian process Mapeamento Cerebral Motor cortex Prior elicitation Processo de Dirichlet Processo Gaussiano |
topic |
Brain mapping Córtex Motor Dirichlet process Elicitação a Priori Gaussian process Mapeamento Cerebral Motor cortex Prior elicitation Processo de Dirichlet Processo Gaussiano |
description |
In recent years, Spatial statistical models have been gaining rapid attention for solving problems in biological systems due to the improvement in spatial data collection. It has proven extremely important in unveiling spatial patterns and predicting biological processes. This project developed novel parametric and nonparametric Bayesian spatial statistical models to analyze data generated by the muscular responses elicited by Transcranial magnetic stimulation (TMS) pulses induced on the motor cortex of a patient. The goal is to unveil new insights into patients response patterns important for achieving successful TMS therapy sessions. The first contribution of this project is a systematic review and meta-analysis of the existing Bayesian spatial models that could be considered for analyzing TMS datasets. The second contribution is the development of a user-friendly interface for performing Bayesian spatial modeling for analyzing TMS datasets based on state-of-the-art methods. The interface was documented in an R package, which is publicly available. The third contribution proposed novel spatial statistical models for integrating geostatistical datasets in the form of prior elicitation in a Bayesian analysis. The models were validated using simulation studies, and findings show that naively integrating geostatistical TMS datasets without ensuring the consistency of the data is detrimental to the desired inferences. The final contribution proposed a Bayesian nonparametric spatial model that leads to a non-stationary and non-Gaussian spatial process for the joint modeling of geostatistical TMS datasets. The method used a mixture of Dependent Dirichlet processes to share information across sub-spatial models. Two simulation studies were used to validate the model performance, and the result showed superior performance compared with independent and exchangeable models. The main finding of this work is that the primary motor cortex within the motor cortex region of the brain is responsible for the largest activation in the movement of the right first dorsal interosseous muscle. The finding also showed that the corticospinal excitability decreases with multiple TMS pulses on the motor cortex; however, it begins to regain its excitability strength after several stimulations. The findings from this project could guide TMS practitioners to improve patients treatment experiences. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-12092023-191817/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-12092023-191817/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256993275838464 |