A transformação vetorial de Ribaucour para subvariedades de curvatura constante
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/7583 |
Resumo: | In this work we obtain a reduction of the vectorial Ribaucour transformation that preserves the class of submanifolds with constant sectional curvature of space forms. As a consequence, a process is derived to generate a new family of such submanifolds starting from a given one. We prove a decomposition theorem for this transformation, from which the classical permutability theorem for the Ribaucour transformation of submanifolds with constant sectional curvature follows. Given k scalar Ribaucour transforms of a submanifold with constant sectional curvature, we prove the existence of a Bianchi k-cube all of whose vertices are submanifolds with the same constant sectional curvature, each of which is given by means of explicit algebraic formulas. A further reduction of the transformation is shown to preserve the class of Lagrangian submanifolds of dimension n and constant sectional curvature c of complex space forms of complex dimension n and constant holomorphic sectional curvature 4c. In particular, explicit parametrizations in terms of elementary functions of examples with arbitrary dimension and curvature are provided. A decomposition theorem and a version of the Bianchi cube for this transformation are also obtained. |
id |
SCAR_afa33d4ce317e7fdd438557857431ef4 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/7583 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Guimarães, Daniel da SilveiraFigueiredo Junior, Ruy Tojeiro dehttp://lattes.cnpq.br/9930999514347198http://lattes.cnpq.br/352035743918866469b57df3-8d2d-4360-a107-9966d85a2f4f2016-09-30T14:04:28Z2016-09-30T14:04:28Z2015-06-09GUIMARÃES, Daniel da Silveira. A transformação vetorial de Ribaucour para subvariedades de curvatura constante. 2015. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7583.https://repositorio.ufscar.br/handle/ufscar/7583In this work we obtain a reduction of the vectorial Ribaucour transformation that preserves the class of submanifolds with constant sectional curvature of space forms. As a consequence, a process is derived to generate a new family of such submanifolds starting from a given one. We prove a decomposition theorem for this transformation, from which the classical permutability theorem for the Ribaucour transformation of submanifolds with constant sectional curvature follows. Given k scalar Ribaucour transforms of a submanifold with constant sectional curvature, we prove the existence of a Bianchi k-cube all of whose vertices are submanifolds with the same constant sectional curvature, each of which is given by means of explicit algebraic formulas. A further reduction of the transformation is shown to preserve the class of Lagrangian submanifolds of dimension n and constant sectional curvature c of complex space forms of complex dimension n and constant holomorphic sectional curvature 4c. In particular, explicit parametrizations in terms of elementary functions of examples with arbitrary dimension and curvature are provided. A decomposition theorem and a version of the Bianchi cube for this transformation are also obtained.Neste trabalho, obtemos uma redução da transformação vetorial de Ribaucour que preserva a classe das subvariedades de curvatura seccional constante de formas espaciais. Como consequência, é obtido um processo para gerar uma nova família de tais subvariedades a partir de uma dada. Provamos um teorema de decomposição para tal transformação, do qual decorre, em particular, o teorema clássico de permutabilidade para a transformação de Ribaucour de subvariedades de curvatura seccional constante. Mostramos ainda que k tais transformadas escalares de uma subvariedade de curvatura seccional constante c determinam um único k-cubo de Bianchi cujos vértices são todos subvariedades com a mesma curvatura seccional constante, cada uma das quais é dada por meio de fórmulas algébricas explícitas. Uma redução adicional de tal transformação é obtida para a classe de subvariedades Lagrangianas de dimensão n e curvatura seccional constante c de uma forma espacial complexa de dimensão n e curvatura seccional holomorfa 4c. Em particular, parametrizações explícitas, em termos de funções elementares, de exemplos com dimensão e curvatura arbitrária são fornecidos. Novamente, um Teorema de decomposição e uma versão do cubo de Bianchi para tal transformação são apresentados.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarGeometria diferencialTransformação de RibaucourEspaços de curvatura constanteSubvariedade LagrangianaImersão isométrica horizontalCIENCIAS EXATAS E DA TERRA::MATEMATICACIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIAA transformação vetorial de Ribaucour para subvariedades de curvatura constanteinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline60027fd6011-41f1-45f6-8dbf-fc4a2dd73c9binfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseDSG.pdfTeseDSG.pdfapplication/pdf1261184https://repositorio.ufscar.br/bitstream/ufscar/7583/1/TeseDSG.pdfe6c2459a186ca8384805217f7ab743e9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7583/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseDSG.pdf.txtTeseDSG.pdf.txtExtracted texttext/plain302430https://repositorio.ufscar.br/bitstream/ufscar/7583/3/TeseDSG.pdf.txt7479190a4e6b407cc84a17d26c0ce2b8MD53THUMBNAILTeseDSG.pdf.jpgTeseDSG.pdf.jpgIM Thumbnailimage/jpeg7440https://repositorio.ufscar.br/bitstream/ufscar/7583/4/TeseDSG.pdf.jpgd5a895c4ca6fe5b7df1ada5c3ddc08bbMD54ufscar/75832023-09-18 18:30:53.08oai:repositorio.ufscar.br:ufscar/7583TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:53Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
A transformação vetorial de Ribaucour para subvariedades de curvatura constante |
title |
A transformação vetorial de Ribaucour para subvariedades de curvatura constante |
spellingShingle |
A transformação vetorial de Ribaucour para subvariedades de curvatura constante Guimarães, Daniel da Silveira Geometria diferencial Transformação de Ribaucour Espaços de curvatura constante Subvariedade Lagrangiana Imersão isométrica horizontal CIENCIAS EXATAS E DA TERRA::MATEMATICA CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA |
title_short |
A transformação vetorial de Ribaucour para subvariedades de curvatura constante |
title_full |
A transformação vetorial de Ribaucour para subvariedades de curvatura constante |
title_fullStr |
A transformação vetorial de Ribaucour para subvariedades de curvatura constante |
title_full_unstemmed |
A transformação vetorial de Ribaucour para subvariedades de curvatura constante |
title_sort |
A transformação vetorial de Ribaucour para subvariedades de curvatura constante |
author |
Guimarães, Daniel da Silveira |
author_facet |
Guimarães, Daniel da Silveira |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/3520357439188664 |
dc.contributor.author.fl_str_mv |
Guimarães, Daniel da Silveira |
dc.contributor.advisor1.fl_str_mv |
Figueiredo Junior, Ruy Tojeiro de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9930999514347198 |
dc.contributor.authorID.fl_str_mv |
69b57df3-8d2d-4360-a107-9966d85a2f4f |
contributor_str_mv |
Figueiredo Junior, Ruy Tojeiro de |
dc.subject.por.fl_str_mv |
Geometria diferencial Transformação de Ribaucour Espaços de curvatura constante Subvariedade Lagrangiana Imersão isométrica horizontal |
topic |
Geometria diferencial Transformação de Ribaucour Espaços de curvatura constante Subvariedade Lagrangiana Imersão isométrica horizontal CIENCIAS EXATAS E DA TERRA::MATEMATICA CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA |
description |
In this work we obtain a reduction of the vectorial Ribaucour transformation that preserves the class of submanifolds with constant sectional curvature of space forms. As a consequence, a process is derived to generate a new family of such submanifolds starting from a given one. We prove a decomposition theorem for this transformation, from which the classical permutability theorem for the Ribaucour transformation of submanifolds with constant sectional curvature follows. Given k scalar Ribaucour transforms of a submanifold with constant sectional curvature, we prove the existence of a Bianchi k-cube all of whose vertices are submanifolds with the same constant sectional curvature, each of which is given by means of explicit algebraic formulas. A further reduction of the transformation is shown to preserve the class of Lagrangian submanifolds of dimension n and constant sectional curvature c of complex space forms of complex dimension n and constant holomorphic sectional curvature 4c. In particular, explicit parametrizations in terms of elementary functions of examples with arbitrary dimension and curvature are provided. A decomposition theorem and a version of the Bianchi cube for this transformation are also obtained. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-06-09 |
dc.date.accessioned.fl_str_mv |
2016-09-30T14:04:28Z |
dc.date.available.fl_str_mv |
2016-09-30T14:04:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GUIMARÃES, Daniel da Silveira. A transformação vetorial de Ribaucour para subvariedades de curvatura constante. 2015. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7583. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/7583 |
identifier_str_mv |
GUIMARÃES, Daniel da Silveira. A transformação vetorial de Ribaucour para subvariedades de curvatura constante. 2015. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7583. |
url |
https://repositorio.ufscar.br/handle/ufscar/7583 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 |
dc.relation.authority.fl_str_mv |
27fd6011-41f1-45f6-8dbf-fc4a2dd73c9b |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/7583/1/TeseDSG.pdf https://repositorio.ufscar.br/bitstream/ufscar/7583/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/7583/3/TeseDSG.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/7583/4/TeseDSG.pdf.jpg |
bitstream.checksum.fl_str_mv |
e6c2459a186ca8384805217f7ab743e9 ae0398b6f8b235e40ad82cba6c50031d 7479190a4e6b407cc84a17d26c0ce2b8 d5a895c4ca6fe5b7df1ada5c3ddc08bb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715563220828160 |