Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana

Detalhes bibliográficos
Autor(a) principal: Aquino Gutierrez, Karen Fiorella
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/9340
Resumo: In the last decades volatility has become a very important concept in the financial area, being used to measure the risk of financial instruments. In this work, the focus of study is the modeling of volatility, that refers to the variability of returns, which is a characteristic present in the financial time series. As a fundamental modeling tool, we used the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model, which uses conditional heteroscedasticity as a measure of volatility. Two main characteristics will be considered to be modeled with the purpose of a better adjustment and prediction of the volatility, these are: heavy tails and an asymmetry present in the unconditional distribution of the return series. The estimation of the parameters of the proposed models is done by means of the Bayesian approach with an MCMC (Markov Chain Monte Carlo) methodology , specifically the Metropolis-Hastings algorithm.
id SCAR_b833ba8313accc363092cb52692a6bb3
oai_identifier_str oai:repositorio.ufscar.br:ufscar/9340
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Aquino Gutierrez, Karen FiorellaEhlers, Ricardo Sandeshttp://lattes.cnpq.br/4020997206928882Andrade Filho, Marinho Gomes dehttp://lattes.cnpq.br/4126245980112687http://lattes.cnpq.br/801318129484724013eb48e9-5200-4086-af05-d9f381e1804e2018-01-30T19:26:17Z2018-01-30T19:26:17Z2017-07-18AQUINO GUTIERREZ, Karen Fiorella. Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana. 2017. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9340.https://repositorio.ufscar.br/handle/ufscar/9340In the last decades volatility has become a very important concept in the financial area, being used to measure the risk of financial instruments. In this work, the focus of study is the modeling of volatility, that refers to the variability of returns, which is a characteristic present in the financial time series. As a fundamental modeling tool, we used the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model, which uses conditional heteroscedasticity as a measure of volatility. Two main characteristics will be considered to be modeled with the purpose of a better adjustment and prediction of the volatility, these are: heavy tails and an asymmetry present in the unconditional distribution of the return series. The estimation of the parameters of the proposed models is done by means of the Bayesian approach with an MCMC (Markov Chain Monte Carlo) methodology , specifically the Metropolis-Hastings algorithm.Nas últimas décadas a volatilidade transformou-se num conceito muito importante na área financeira, sendo utilizada para mensurar o risco de instrumentos financeiros. Neste trabalho, o foco de estudo é a modelagem da volatilidade, que faz referência à variabilidade dos retornos, sendo esta uma característica presente nas séries temporais financeiras. Como ferramenta fundamental da modelação usaremos o modelo GARCH (Generalized Autoregressive Conditional Heteroskedasticity), que usa a heterocedasticidade condicional como uma medida da volatilidade. Considerar-se-ão duas características principais a ser modeladas com o propósito de obter um melhor ajuste e previsão da volatilidade, estas são: a assimetria e as caudas pesadas presentes na distribuição incondicional da série dos retornos. A estimação dos parâmetros dos modelos propostos será feita utilizando a abordagem Bayesiana com a metodologia MCMC (Markov Chain Monte Carlo) especificamente o algoritmo de Metropolis-Hastings.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarSéries temporaisInferência bayesianaVolatilidadeModelos GARCHDistribuições assimétricasTime seriesBayesian inferenceVolatilityGARCH modelsAsymmetric distributionsCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAModelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesianaModeling of volatility in financial time series using GARCH models with bayesian approachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline6003dbdbf82-45a6-4e75-b0c2-99c510672c97info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissKFAG.pdfDissKFAG.pdfapplication/pdf21371434https://repositorio.ufscar.br/bitstream/ufscar/9340/1/DissKFAG.pdfe9355d67b5b05eda13ae02e3ae7d0fdfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9340/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTDissKFAG.pdf.txtDissKFAG.pdf.txtExtracted texttext/plain122135https://repositorio.ufscar.br/bitstream/ufscar/9340/3/DissKFAG.pdf.txtc47abed91a4ee983082e88dfbbbbd0cdMD53THUMBNAILDissKFAG.pdf.jpgDissKFAG.pdf.jpgIM Thumbnailimage/jpeg5516https://repositorio.ufscar.br/bitstream/ufscar/9340/4/DissKFAG.pdf.jpg8be48773273118d71c88efb8bd3df162MD54ufscar/93402023-09-18 18:31:11.997oai:repositorio.ufscar.br:ufscar/9340TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:11Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana
dc.title.alternative.eng.fl_str_mv Modeling of volatility in financial time series using GARCH models with bayesian approach
title Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana
spellingShingle Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana
Aquino Gutierrez, Karen Fiorella
Séries temporais
Inferência bayesiana
Volatilidade
Modelos GARCH
Distribuições assimétricas
Time series
Bayesian inference
Volatility
GARCH models
Asymmetric distributions
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana
title_full Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana
title_fullStr Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana
title_full_unstemmed Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana
title_sort Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana
author Aquino Gutierrez, Karen Fiorella
author_facet Aquino Gutierrez, Karen Fiorella
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/8013181294847240
dc.contributor.author.fl_str_mv Aquino Gutierrez, Karen Fiorella
dc.contributor.advisor1.fl_str_mv Ehlers, Ricardo Sandes
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4020997206928882
dc.contributor.advisor-co1.fl_str_mv Andrade Filho, Marinho Gomes de
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4126245980112687
dc.contributor.authorID.fl_str_mv 13eb48e9-5200-4086-af05-d9f381e1804e
contributor_str_mv Ehlers, Ricardo Sandes
Andrade Filho, Marinho Gomes de
dc.subject.por.fl_str_mv Séries temporais
Inferência bayesiana
Volatilidade
Modelos GARCH
Distribuições assimétricas
topic Séries temporais
Inferência bayesiana
Volatilidade
Modelos GARCH
Distribuições assimétricas
Time series
Bayesian inference
Volatility
GARCH models
Asymmetric distributions
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.eng.fl_str_mv Time series
Bayesian inference
Volatility
GARCH models
Asymmetric distributions
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description In the last decades volatility has become a very important concept in the financial area, being used to measure the risk of financial instruments. In this work, the focus of study is the modeling of volatility, that refers to the variability of returns, which is a characteristic present in the financial time series. As a fundamental modeling tool, we used the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model, which uses conditional heteroscedasticity as a measure of volatility. Two main characteristics will be considered to be modeled with the purpose of a better adjustment and prediction of the volatility, these are: heavy tails and an asymmetry present in the unconditional distribution of the return series. The estimation of the parameters of the proposed models is done by means of the Bayesian approach with an MCMC (Markov Chain Monte Carlo) methodology , specifically the Metropolis-Hastings algorithm.
publishDate 2017
dc.date.issued.fl_str_mv 2017-07-18
dc.date.accessioned.fl_str_mv 2018-01-30T19:26:17Z
dc.date.available.fl_str_mv 2018-01-30T19:26:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv AQUINO GUTIERREZ, Karen Fiorella. Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana. 2017. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9340.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/9340
identifier_str_mv AQUINO GUTIERREZ, Karen Fiorella. Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana. 2017. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9340.
url https://repositorio.ufscar.br/handle/ufscar/9340
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv 3dbdbf82-45a6-4e75-b0c2-99c510672c97
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/9340/1/DissKFAG.pdf
https://repositorio.ufscar.br/bitstream/ufscar/9340/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/9340/3/DissKFAG.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/9340/4/DissKFAG.pdf.jpg
bitstream.checksum.fl_str_mv e9355d67b5b05eda13ae02e3ae7d0fdf
ae0398b6f8b235e40ad82cba6c50031d
c47abed91a4ee983082e88dfbbbbd0cd
8be48773273118d71c88efb8bd3df162
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715580756164608