Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/9340 |
Resumo: | In the last decades volatility has become a very important concept in the financial area, being used to measure the risk of financial instruments. In this work, the focus of study is the modeling of volatility, that refers to the variability of returns, which is a characteristic present in the financial time series. As a fundamental modeling tool, we used the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model, which uses conditional heteroscedasticity as a measure of volatility. Two main characteristics will be considered to be modeled with the purpose of a better adjustment and prediction of the volatility, these are: heavy tails and an asymmetry present in the unconditional distribution of the return series. The estimation of the parameters of the proposed models is done by means of the Bayesian approach with an MCMC (Markov Chain Monte Carlo) methodology , specifically the Metropolis-Hastings algorithm. |
id |
SCAR_b833ba8313accc363092cb52692a6bb3 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/9340 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Aquino Gutierrez, Karen FiorellaEhlers, Ricardo Sandeshttp://lattes.cnpq.br/4020997206928882Andrade Filho, Marinho Gomes dehttp://lattes.cnpq.br/4126245980112687http://lattes.cnpq.br/801318129484724013eb48e9-5200-4086-af05-d9f381e1804e2018-01-30T19:26:17Z2018-01-30T19:26:17Z2017-07-18AQUINO GUTIERREZ, Karen Fiorella. Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana. 2017. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9340.https://repositorio.ufscar.br/handle/ufscar/9340In the last decades volatility has become a very important concept in the financial area, being used to measure the risk of financial instruments. In this work, the focus of study is the modeling of volatility, that refers to the variability of returns, which is a characteristic present in the financial time series. As a fundamental modeling tool, we used the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model, which uses conditional heteroscedasticity as a measure of volatility. Two main characteristics will be considered to be modeled with the purpose of a better adjustment and prediction of the volatility, these are: heavy tails and an asymmetry present in the unconditional distribution of the return series. The estimation of the parameters of the proposed models is done by means of the Bayesian approach with an MCMC (Markov Chain Monte Carlo) methodology , specifically the Metropolis-Hastings algorithm.Nas últimas décadas a volatilidade transformou-se num conceito muito importante na área financeira, sendo utilizada para mensurar o risco de instrumentos financeiros. Neste trabalho, o foco de estudo é a modelagem da volatilidade, que faz referência à variabilidade dos retornos, sendo esta uma característica presente nas séries temporais financeiras. Como ferramenta fundamental da modelação usaremos o modelo GARCH (Generalized Autoregressive Conditional Heteroskedasticity), que usa a heterocedasticidade condicional como uma medida da volatilidade. Considerar-se-ão duas características principais a ser modeladas com o propósito de obter um melhor ajuste e previsão da volatilidade, estas são: a assimetria e as caudas pesadas presentes na distribuição incondicional da série dos retornos. A estimação dos parâmetros dos modelos propostos será feita utilizando a abordagem Bayesiana com a metodologia MCMC (Markov Chain Monte Carlo) especificamente o algoritmo de Metropolis-Hastings.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarSéries temporaisInferência bayesianaVolatilidadeModelos GARCHDistribuições assimétricasTime seriesBayesian inferenceVolatilityGARCH modelsAsymmetric distributionsCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAModelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesianaModeling of volatility in financial time series using GARCH models with bayesian approachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline6003dbdbf82-45a6-4e75-b0c2-99c510672c97info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissKFAG.pdfDissKFAG.pdfapplication/pdf21371434https://repositorio.ufscar.br/bitstream/ufscar/9340/1/DissKFAG.pdfe9355d67b5b05eda13ae02e3ae7d0fdfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9340/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTDissKFAG.pdf.txtDissKFAG.pdf.txtExtracted texttext/plain122135https://repositorio.ufscar.br/bitstream/ufscar/9340/3/DissKFAG.pdf.txtc47abed91a4ee983082e88dfbbbbd0cdMD53THUMBNAILDissKFAG.pdf.jpgDissKFAG.pdf.jpgIM Thumbnailimage/jpeg5516https://repositorio.ufscar.br/bitstream/ufscar/9340/4/DissKFAG.pdf.jpg8be48773273118d71c88efb8bd3df162MD54ufscar/93402023-09-18 18:31:11.997oai:repositorio.ufscar.br:ufscar/9340TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:11Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana |
dc.title.alternative.eng.fl_str_mv |
Modeling of volatility in financial time series using GARCH models with bayesian approach |
title |
Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana |
spellingShingle |
Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana Aquino Gutierrez, Karen Fiorella Séries temporais Inferência bayesiana Volatilidade Modelos GARCH Distribuições assimétricas Time series Bayesian inference Volatility GARCH models Asymmetric distributions CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
title_short |
Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana |
title_full |
Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana |
title_fullStr |
Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana |
title_full_unstemmed |
Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana |
title_sort |
Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana |
author |
Aquino Gutierrez, Karen Fiorella |
author_facet |
Aquino Gutierrez, Karen Fiorella |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/8013181294847240 |
dc.contributor.author.fl_str_mv |
Aquino Gutierrez, Karen Fiorella |
dc.contributor.advisor1.fl_str_mv |
Ehlers, Ricardo Sandes |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4020997206928882 |
dc.contributor.advisor-co1.fl_str_mv |
Andrade Filho, Marinho Gomes de |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4126245980112687 |
dc.contributor.authorID.fl_str_mv |
13eb48e9-5200-4086-af05-d9f381e1804e |
contributor_str_mv |
Ehlers, Ricardo Sandes Andrade Filho, Marinho Gomes de |
dc.subject.por.fl_str_mv |
Séries temporais Inferência bayesiana Volatilidade Modelos GARCH Distribuições assimétricas |
topic |
Séries temporais Inferência bayesiana Volatilidade Modelos GARCH Distribuições assimétricas Time series Bayesian inference Volatility GARCH models Asymmetric distributions CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
dc.subject.eng.fl_str_mv |
Time series Bayesian inference Volatility GARCH models Asymmetric distributions |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
description |
In the last decades volatility has become a very important concept in the financial area, being used to measure the risk of financial instruments. In this work, the focus of study is the modeling of volatility, that refers to the variability of returns, which is a characteristic present in the financial time series. As a fundamental modeling tool, we used the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model, which uses conditional heteroscedasticity as a measure of volatility. Two main characteristics will be considered to be modeled with the purpose of a better adjustment and prediction of the volatility, these are: heavy tails and an asymmetry present in the unconditional distribution of the return series. The estimation of the parameters of the proposed models is done by means of the Bayesian approach with an MCMC (Markov Chain Monte Carlo) methodology , specifically the Metropolis-Hastings algorithm. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-07-18 |
dc.date.accessioned.fl_str_mv |
2018-01-30T19:26:17Z |
dc.date.available.fl_str_mv |
2018-01-30T19:26:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
AQUINO GUTIERREZ, Karen Fiorella. Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana. 2017. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9340. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/9340 |
identifier_str_mv |
AQUINO GUTIERREZ, Karen Fiorella. Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem bayesiana. 2017. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9340. |
url |
https://repositorio.ufscar.br/handle/ufscar/9340 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 |
dc.relation.authority.fl_str_mv |
3dbdbf82-45a6-4e75-b0c2-99c510672c97 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/9340/1/DissKFAG.pdf https://repositorio.ufscar.br/bitstream/ufscar/9340/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/9340/3/DissKFAG.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/9340/4/DissKFAG.pdf.jpg |
bitstream.checksum.fl_str_mv |
e9355d67b5b05eda13ae02e3ae7d0fdf ae0398b6f8b235e40ad82cba6c50031d c47abed91a4ee983082e88dfbbbbd0cd 8be48773273118d71c88efb8bd3df162 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715580756164608 |