Análise de diagnóstico em modelos de regressão ZAGA e ZAIG

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Juliana Scudilio
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/7857
Resumo: Residuals play an important role in checking model adequacy and in the identi cation of outliers and in uential observations. In this paper, we studied two class of residuals for the zero adjusted gamma regression model (ZAGA) and the zero adjusted inverse Gaussian regression model (ZAIG). These classes of residuals are function of a residual for the continuous component of the model and the maximum likelihood estimate of the probability of the observation assuming the zero value. Monte Carlo simulation studies are performed to examine the properties of this class of residuals in both models (ZAGA and ZAIG). Results showed that a residual of one of these class has some similar properties to the standard normal distribution in the studied models. We also described ZAGA and ZAIG regression models, studied properties of some residuals in generalized linear models with response gamma and inverse Gaussian and discussed other aspects of diagnostic analysis in ZAGA and ZAIG models. To nsih, we presented a real dataset application from investment funds of Brazil. We tted the ZAIG model to illustrate the topics discussed and showed the importance of these models and the advantages of one of the studied residuals in the analysis of real dataset.
id SCAR_c5ef1d6e56818ac1993aa632aeea5b8e
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7857
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Rodrigues, Juliana ScudilioPereira, Gustavo Henrique de Araujohttp://lattes.cnpq.br/4536501674241631http://lattes.cnpq.br/518901008600500542201f0f-fdea-4bda-8466-e87cc06ed0022016-10-13T20:40:33Z2016-10-13T20:40:33Z2016-03-10RODRIGUES, Juliana Scudilio. Análise de diagnóstico em modelos de regressão ZAGA e ZAIG. 2016. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7857.https://repositorio.ufscar.br/handle/ufscar/7857Residuals play an important role in checking model adequacy and in the identi cation of outliers and in uential observations. In this paper, we studied two class of residuals for the zero adjusted gamma regression model (ZAGA) and the zero adjusted inverse Gaussian regression model (ZAIG). These classes of residuals are function of a residual for the continuous component of the model and the maximum likelihood estimate of the probability of the observation assuming the zero value. Monte Carlo simulation studies are performed to examine the properties of this class of residuals in both models (ZAGA and ZAIG). Results showed that a residual of one of these class has some similar properties to the standard normal distribution in the studied models. We also described ZAGA and ZAIG regression models, studied properties of some residuals in generalized linear models with response gamma and inverse Gaussian and discussed other aspects of diagnostic analysis in ZAGA and ZAIG models. To nsih, we presented a real dataset application from investment funds of Brazil. We tted the ZAIG model to illustrate the topics discussed and showed the importance of these models and the advantages of one of the studied residuals in the analysis of real dataset.Resíduos desempenham um papel importante na veri cação do ajuste do modelo e na identi cação de observações discrepantes e/ou in uentes. Neste trabalho, estudamos duas classes de resíduos para os modelos de regressão gama in acionados no zero (ZAGA) e gaussiana inversa in acionados no zero (ZAIG). Essas classes de resíduos são uma função de um resíduo para o componente contínuo do modelo e da estimativa de máxima verossimilhança da probabilidade da observação assumir o valor zero. Estudos de simulação de Monte Carlo foram realizados para examinar as propriedades dessas classes de resíduos em ambos os modelos de regressão (ZAGA e ZAIG). Os resultados mostraram que um resíduo de uma dessas classes tem algumas propriedades semelhantes à da distribuição normal padrão nos modelos estudados. Além desse objetivo principal, descrevemos os modelos de regressão ZAGA e ZAIG, estudamos propriedades de alguns resíduos em modelos lineares generalizados com resposta gama e gaussiana inversa e discutimos outros aspectos de análise de diagnóstico nos modelos ZAGA e ZAIG. Para nalizar, foi feita uma aplicação com dados reais de fundos de investimentos, em que ajustamos o modelo ZAIG, para exempli car os tópicos discutidos e mostrar a importância desses modelos e as vantagens de um dos resíduos estudados na análise de dados reais.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarAnálise de diagnósticoFundo de investimentoModelos de regressão in acionado no zeroModelo ZAGAModelo ZAIGResíduo quantílicoDiagnostic analysisIn ated regression modelsInvestiment fundsQuantile residualZAGA modelsZAIG modelsCIENCIAS EXATAS E DA TERRAAnálise de diagnóstico em modelos de regressão ZAGA e ZAIGDiagnostic analysis in ZAGA and ZAIG regression models.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600c46df921-489b-4fcd-b981-2bd7f0512e1ainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissJSR.pdfDissJSR.pdfapplication/pdf1876095https://repositorio.ufscar.br/bitstream/ufscar/7857/1/DissJSR.pdfc73d62c08322c1ffad6e30271b52d706MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7857/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTDissJSR.pdf.txtDissJSR.pdf.txtExtracted texttext/plain332071https://repositorio.ufscar.br/bitstream/ufscar/7857/3/DissJSR.pdf.txtd764a6e64729b899508d97dcbd427b4bMD53THUMBNAILDissJSR.pdf.jpgDissJSR.pdf.jpgIM Thumbnailimage/jpeg4880https://repositorio.ufscar.br/bitstream/ufscar/7857/4/DissJSR.pdf.jpgbdf1621c3d649b319bf962f3772d448dMD54ufscar/78572023-09-18 18:31:49.171oai:repositorio.ufscar.br:ufscar/7857TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:49Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Análise de diagnóstico em modelos de regressão ZAGA e ZAIG
dc.title.alternative.eng.fl_str_mv Diagnostic analysis in ZAGA and ZAIG regression models.
title Análise de diagnóstico em modelos de regressão ZAGA e ZAIG
spellingShingle Análise de diagnóstico em modelos de regressão ZAGA e ZAIG
Rodrigues, Juliana Scudilio
Análise de diagnóstico
Fundo de investimento
Modelos de regressão in acionado no zero
Modelo ZAGA
Modelo ZAIG
Resíduo quantílico
Diagnostic analysis
In ated regression models
Investiment funds
Quantile residual
ZAGA models
ZAIG models
CIENCIAS EXATAS E DA TERRA
title_short Análise de diagnóstico em modelos de regressão ZAGA e ZAIG
title_full Análise de diagnóstico em modelos de regressão ZAGA e ZAIG
title_fullStr Análise de diagnóstico em modelos de regressão ZAGA e ZAIG
title_full_unstemmed Análise de diagnóstico em modelos de regressão ZAGA e ZAIG
title_sort Análise de diagnóstico em modelos de regressão ZAGA e ZAIG
author Rodrigues, Juliana Scudilio
author_facet Rodrigues, Juliana Scudilio
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5189010086005005
dc.contributor.author.fl_str_mv Rodrigues, Juliana Scudilio
dc.contributor.advisor1.fl_str_mv Pereira, Gustavo Henrique de Araujo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4536501674241631
dc.contributor.authorID.fl_str_mv 42201f0f-fdea-4bda-8466-e87cc06ed002
contributor_str_mv Pereira, Gustavo Henrique de Araujo
dc.subject.por.fl_str_mv Análise de diagnóstico
Fundo de investimento
Modelos de regressão in acionado no zero
Modelo ZAGA
Modelo ZAIG
Resíduo quantílico
topic Análise de diagnóstico
Fundo de investimento
Modelos de regressão in acionado no zero
Modelo ZAGA
Modelo ZAIG
Resíduo quantílico
Diagnostic analysis
In ated regression models
Investiment funds
Quantile residual
ZAGA models
ZAIG models
CIENCIAS EXATAS E DA TERRA
dc.subject.eng.fl_str_mv Diagnostic analysis
In ated regression models
Investiment funds
Quantile residual
ZAGA models
ZAIG models
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA
description Residuals play an important role in checking model adequacy and in the identi cation of outliers and in uential observations. In this paper, we studied two class of residuals for the zero adjusted gamma regression model (ZAGA) and the zero adjusted inverse Gaussian regression model (ZAIG). These classes of residuals are function of a residual for the continuous component of the model and the maximum likelihood estimate of the probability of the observation assuming the zero value. Monte Carlo simulation studies are performed to examine the properties of this class of residuals in both models (ZAGA and ZAIG). Results showed that a residual of one of these class has some similar properties to the standard normal distribution in the studied models. We also described ZAGA and ZAIG regression models, studied properties of some residuals in generalized linear models with response gamma and inverse Gaussian and discussed other aspects of diagnostic analysis in ZAGA and ZAIG models. To nsih, we presented a real dataset application from investment funds of Brazil. We tted the ZAIG model to illustrate the topics discussed and showed the importance of these models and the advantages of one of the studied residuals in the analysis of real dataset.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-10-13T20:40:33Z
dc.date.available.fl_str_mv 2016-10-13T20:40:33Z
dc.date.issued.fl_str_mv 2016-03-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RODRIGUES, Juliana Scudilio. Análise de diagnóstico em modelos de regressão ZAGA e ZAIG. 2016. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7857.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7857
identifier_str_mv RODRIGUES, Juliana Scudilio. Análise de diagnóstico em modelos de regressão ZAGA e ZAIG. 2016. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7857.
url https://repositorio.ufscar.br/handle/ufscar/7857
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv c46df921-489b-4fcd-b981-2bd7f0512e1a
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/7857/1/DissJSR.pdf
https://repositorio.ufscar.br/bitstream/ufscar/7857/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/7857/3/DissJSR.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/7857/4/DissJSR.pdf.jpg
bitstream.checksum.fl_str_mv c73d62c08322c1ffad6e30271b52d706
ae0398b6f8b235e40ad82cba6c50031d
d764a6e64729b899508d97dcbd427b4b
bdf1621c3d649b319bf962f3772d448d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715563604606976