Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/9179 |
Resumo: | In ethanol production process from hemicellulosic fraction, the use of xylooligomers (XOS) as substrate reduce the contamination risk, favoring its application at industrial scale. Thus, a biocatalyst, containing xylanases, xylose isomerase (XI) and yeast co-immobilized in calcium alginate gel, was developed and XOS simultaneous hydrolysis, isomerization and fermentation (SHIF) process was studied. Firstly, xylanases from Multifect CX XL A03139 (XAS-5), a commercial enzyme preparation, and the recombinant xylanase from Bacillus subtilis (XynA) were selected to compose biocatalyst beads. XAS-5 presented better conversion (78.7%) and higher xylose production in the hydrolysis of beechwood xylan, while XynA showed exclusive endoxylanase activity. The immobilization and stabilization of XynA were performed in chitosan-glutaraldehyde, chitosan-glyoxyl and agarose-glyoxyl. Although the enzyme was efficiently immobilized on all supports, the agarose-glyoxyl-XynA derivative was notable for exhibiting remarkable stabilization under tested conditions (8600 times). Studies of SHIF process were carried out with birchwood xylan, leading to ethanol production (0.160 g/g and 0.092 g/L.h) and xylose accumulation, which indicated XI activity decrease. Further experiments were then performed to to identify possible inhibitors of XI (pH, Ca2+, Mg2+ and xylooligosaccharides). Ca2+ was identified as an inhibitor, while Mg2+ acts as an activator of the enzyme, and both actions are potentiated at acidic pHs. XI is also inhibited by XOS, with a decrease of 31.6% in XI activity in the presence of 7.0 g/L of xylobiose. For this reason, it was decided to evaluate SIF process with a recombinant yeast, capable of expressing XI. In batch runs, GSE16-T18 (T18) yeast encapsulated in alginate gel was capable to ferment xylose efficiently, consuming 40 g/L of xylose in 4 h and producing 14.4 g/L of ethanol, with yield of 0.422 g/g and productivity of 3.61 g/L.h. Calcium alginate gel encapsulation also contributed to protect yeast from the action of inhibitors, such as acetic acid. The encapsulated T18 was able to perform 10 consecutive cycles in repeated batch (yeast extract-peptone medium with 40 g/L of xylose), keeping the same productivity and high yields. It also fermented efficiently sugarcane bagasse hydrolysate, containing 60 g/L of fermentable sugars and high grade of inhibitors. The modified yeast to be more tolerant to acetic acid, GSE16-T18 HAA1, was also studied, exhibiting superior performance in comparison to T18 for hydrolysate fermentations. Continuous experiments were conducted in a fixed bed reactor using the T18-HAA1 yeast immobilized, with different xylose concentrations (40, 60, 80 and 120 g/L) in the feed medium. The reactor was operated up to 15 days, without bacterial contamination, with yield of 0.45 g/g, productivity of 4.8 g/L.h and selectivity of 31 gethanol/gxylitol (60 g/L of xylose in the feed). For the concentrations higher than 60 g/L, the conversion decreased after 4 days of continuous operation, indicating loss of cell viability due to hazardous effect of ethanol when present at 30 g/L or more, as well as limitation of oxygen and nutrients in the system. |
id |
SCAR_d0f14cb1a29becc88f041d7617259784 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/9179 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Milessi, Thais Suzane dos SantosGiordano, Raquel de Lima Camargohttp://lattes.cnpq.br/9695542424889786Zangirolami, Teresa Cristinahttp://lattes.cnpq.br/4546701843297248http://lattes.cnpq.br/7000002745065879891b415a-03a3-4d74-9e87-3b91c060be692017-10-31T16:41:50Z2017-10-31T16:41:50Z2017-03-30MILESSI, Thais Suzane dos Santos. Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas. 2017. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9179.https://repositorio.ufscar.br/handle/ufscar/9179In ethanol production process from hemicellulosic fraction, the use of xylooligomers (XOS) as substrate reduce the contamination risk, favoring its application at industrial scale. Thus, a biocatalyst, containing xylanases, xylose isomerase (XI) and yeast co-immobilized in calcium alginate gel, was developed and XOS simultaneous hydrolysis, isomerization and fermentation (SHIF) process was studied. Firstly, xylanases from Multifect CX XL A03139 (XAS-5), a commercial enzyme preparation, and the recombinant xylanase from Bacillus subtilis (XynA) were selected to compose biocatalyst beads. XAS-5 presented better conversion (78.7%) and higher xylose production in the hydrolysis of beechwood xylan, while XynA showed exclusive endoxylanase activity. The immobilization and stabilization of XynA were performed in chitosan-glutaraldehyde, chitosan-glyoxyl and agarose-glyoxyl. Although the enzyme was efficiently immobilized on all supports, the agarose-glyoxyl-XynA derivative was notable for exhibiting remarkable stabilization under tested conditions (8600 times). Studies of SHIF process were carried out with birchwood xylan, leading to ethanol production (0.160 g/g and 0.092 g/L.h) and xylose accumulation, which indicated XI activity decrease. Further experiments were then performed to to identify possible inhibitors of XI (pH, Ca2+, Mg2+ and xylooligosaccharides). Ca2+ was identified as an inhibitor, while Mg2+ acts as an activator of the enzyme, and both actions are potentiated at acidic pHs. XI is also inhibited by XOS, with a decrease of 31.6% in XI activity in the presence of 7.0 g/L of xylobiose. For this reason, it was decided to evaluate SIF process with a recombinant yeast, capable of expressing XI. In batch runs, GSE16-T18 (T18) yeast encapsulated in alginate gel was capable to ferment xylose efficiently, consuming 40 g/L of xylose in 4 h and producing 14.4 g/L of ethanol, with yield of 0.422 g/g and productivity of 3.61 g/L.h. Calcium alginate gel encapsulation also contributed to protect yeast from the action of inhibitors, such as acetic acid. The encapsulated T18 was able to perform 10 consecutive cycles in repeated batch (yeast extract-peptone medium with 40 g/L of xylose), keeping the same productivity and high yields. It also fermented efficiently sugarcane bagasse hydrolysate, containing 60 g/L of fermentable sugars and high grade of inhibitors. The modified yeast to be more tolerant to acetic acid, GSE16-T18 HAA1, was also studied, exhibiting superior performance in comparison to T18 for hydrolysate fermentations. Continuous experiments were conducted in a fixed bed reactor using the T18-HAA1 yeast immobilized, with different xylose concentrations (40, 60, 80 and 120 g/L) in the feed medium. The reactor was operated up to 15 days, without bacterial contamination, with yield of 0.45 g/g, productivity of 4.8 g/L.h and selectivity of 31 gethanol/gxylitol (60 g/L of xylose in the feed). For the concentrations higher than 60 g/L, the conversion decreased after 4 days of continuous operation, indicating loss of cell viability due to hazardous effect of ethanol when present at 30 g/L or more, as well as limitation of oxygen and nutrients in the system.No processo de produção de etanol a partir da fração hemicelulósica, a utilização de xilooligômeros como substrato reduz o risco de contaminação, favorecendo o emprego da tecnologia em escala industrial. Para isso, um biocatalisador contendo xilanases, xilose isomerase (XI) e levedura co-imobilizadas em gel de alginato de cálcio foi desenvolvido e o processo de hidrólise, isomerização e fermentação simultâneos (SHIF) de xilooligômeros foi estudado. Primeiramente, as xilanases presentes no produto Multifect CX XL A03139 (XAS- 5) e a xilanase recombinante de Bacillus subtilis (XynA) foram selecionadas para compor os beads do biocatalisador. XAS-5 apresentou melhor conversão (78,7%) e maior produção de xilose na hidrólise da xilana de faia, enquanto XynA apresentou exclusiva atividade de endoxilanase. Realizou-se a imobilização e estabilização da XynA em quitosanaglutaraldeído, quitosana-glioxil e agarose-glioxil. Apesar da enzima ser eficientemente imobilizada nos três suportes, o derivado agarose-glioxil-XynA se destacou por apresentar uma estabilização notável nas condições testadas (8600 vezes). Estudos do processo SHIF foram realizados com xilana de bétula, observando-se produção de etanol (0,160 g/g e 0,092 g/L.h) e acúmulo de xilose, indicando redução da atividade da XI. Realizou-se então, um estudo para identificar possíveis inibidores da XI (pH, Ca2+, Mg2+ e XOS), constatando-se que Ca2+ é um inibidor enquanto Mg2+ é um ativador da enzima, sendo suas ações potencializadas em pHs ácidos. Comprovou-se também que XI é inibida por XOS, observando-se queda da atividade de XI (31,6%) na presença de 7,0 g/L de xilobiose. Desta forma, tornou-se interessante avaliar o processo SIF com uma levedura recombinante, capaz de expressar XI. Em ensaios em batelada, a levedura GSE16-T18 (T18), encapsulada em gel de alginato, mostrou-se eficiente na fermentação de xilose, consumindo 40 g/L de xilose em 4 h e produzindo 14,4 g/L de etanol, com rendimento de 0,422 g/g e produtividade de 3,61 g/L.h. O encapsulamento em gel de alginato de cálcio também protegeu a levedura da ação de inibidores, como o ácido acético. A T18 encapsulada foi capaz de realizar 10 ciclos consecutivos em bateladas repetidas (meio contendo extrato de levedura, peptona e 40 g/L de substrato), mantendo mesma produtividade e elevado rendimento, além de fermentar eficientemente hidrolisado hemicelulósico de bagaço de cana, contendo 60 g/L de açúcares fermentescíveis e alto teor de inibidores. A levedura GSE16-T18 HAA1, modificada geneticamente para ser mais tolerante ao ácido acético, foi também estudada, com resultados superiores a T18 nas fermentações de hidrolisado. Fermentações em modo contínuo foram realizadas em reator de leito fixo utilizando a levedura T18-HAA1 imobilizada, com diferentes concentrações de xilose na alimentação (40, 60, 80 e 120 g/L). O reator foi operado por até 15 dias, sem ocorrência de contaminação por bactérias, com rendimento 0,45 g/g, produtividade em etanol de 4,8 g/L.h e seletividade de 31 getanol/gxilitol (60 g/L de xilose na alimentação). Para as concentrações superiores a 60 g/L, a conversão diminuiu após 4 dias de operação contínua, indicando perda de viabilidade celular devido à ação do etanol quando presente em concentrações acima de 30 g/L e da limitação de oxigênio e nutrientes no sistema.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarBioetanolHemiceluloseImobilização enzimáticaImobilização celularSaccharomyces cerevisiae recombinanteHidrólise, isomerização e fermentação simultâneas (SHIF)BioethanolHemicelluloseEnzyme immobilizationCell immobilizationRecombinant Saccharomyces cerevisiaeSimultaneous hydrolysis isomerization and fermentation (SHIF)ENGENHARIAS::ENGENHARIA QUIMICAProdução de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline60060087b60e6c-591e-4a38-94f3-e75e2beebea0info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseTSSM.pdfTeseTSSM.pdfapplication/pdf23662587https://repositorio.ufscar.br/bitstream/ufscar/9179/1/TeseTSSM.pdf4ef26b2b65e46560d905cc700258cd0dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9179/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseTSSM.pdf.txtTeseTSSM.pdf.txtExtracted texttext/plain365682https://repositorio.ufscar.br/bitstream/ufscar/9179/5/TeseTSSM.pdf.txt4fd3c9a5787ec894ff7ef9c19eece380MD55THUMBNAILTeseTSSM.pdf.jpgTeseTSSM.pdf.jpgIM Thumbnailimage/jpeg7126https://repositorio.ufscar.br/bitstream/ufscar/9179/6/TeseTSSM.pdf.jpg185c0a0c366991e6aa25894719329008MD56ufscar/91792023-09-18 18:30:38.892oai:repositorio.ufscar.br:ufscar/9179TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:38Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas |
title |
Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas |
spellingShingle |
Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas Milessi, Thais Suzane dos Santos Bioetanol Hemicelulose Imobilização enzimática Imobilização celular Saccharomyces cerevisiae recombinante Hidrólise, isomerização e fermentação simultâneas (SHIF) Bioethanol Hemicellulose Enzyme immobilization Cell immobilization Recombinant Saccharomyces cerevisiae Simultaneous hydrolysis isomerization and fermentation (SHIF) ENGENHARIAS::ENGENHARIA QUIMICA |
title_short |
Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas |
title_full |
Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas |
title_fullStr |
Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas |
title_full_unstemmed |
Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas |
title_sort |
Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas |
author |
Milessi, Thais Suzane dos Santos |
author_facet |
Milessi, Thais Suzane dos Santos |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/7000002745065879 |
dc.contributor.author.fl_str_mv |
Milessi, Thais Suzane dos Santos |
dc.contributor.advisor1.fl_str_mv |
Giordano, Raquel de Lima Camargo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9695542424889786 |
dc.contributor.advisor-co1.fl_str_mv |
Zangirolami, Teresa Cristina |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4546701843297248 |
dc.contributor.authorID.fl_str_mv |
891b415a-03a3-4d74-9e87-3b91c060be69 |
contributor_str_mv |
Giordano, Raquel de Lima Camargo Zangirolami, Teresa Cristina |
dc.subject.por.fl_str_mv |
Bioetanol Hemicelulose Imobilização enzimática Imobilização celular Saccharomyces cerevisiae recombinante Hidrólise, isomerização e fermentação simultâneas (SHIF) |
topic |
Bioetanol Hemicelulose Imobilização enzimática Imobilização celular Saccharomyces cerevisiae recombinante Hidrólise, isomerização e fermentação simultâneas (SHIF) Bioethanol Hemicellulose Enzyme immobilization Cell immobilization Recombinant Saccharomyces cerevisiae Simultaneous hydrolysis isomerization and fermentation (SHIF) ENGENHARIAS::ENGENHARIA QUIMICA |
dc.subject.eng.fl_str_mv |
Bioethanol Hemicellulose Enzyme immobilization Cell immobilization Recombinant Saccharomyces cerevisiae Simultaneous hydrolysis isomerization and fermentation (SHIF) |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA QUIMICA |
description |
In ethanol production process from hemicellulosic fraction, the use of xylooligomers (XOS) as substrate reduce the contamination risk, favoring its application at industrial scale. Thus, a biocatalyst, containing xylanases, xylose isomerase (XI) and yeast co-immobilized in calcium alginate gel, was developed and XOS simultaneous hydrolysis, isomerization and fermentation (SHIF) process was studied. Firstly, xylanases from Multifect CX XL A03139 (XAS-5), a commercial enzyme preparation, and the recombinant xylanase from Bacillus subtilis (XynA) were selected to compose biocatalyst beads. XAS-5 presented better conversion (78.7%) and higher xylose production in the hydrolysis of beechwood xylan, while XynA showed exclusive endoxylanase activity. The immobilization and stabilization of XynA were performed in chitosan-glutaraldehyde, chitosan-glyoxyl and agarose-glyoxyl. Although the enzyme was efficiently immobilized on all supports, the agarose-glyoxyl-XynA derivative was notable for exhibiting remarkable stabilization under tested conditions (8600 times). Studies of SHIF process were carried out with birchwood xylan, leading to ethanol production (0.160 g/g and 0.092 g/L.h) and xylose accumulation, which indicated XI activity decrease. Further experiments were then performed to to identify possible inhibitors of XI (pH, Ca2+, Mg2+ and xylooligosaccharides). Ca2+ was identified as an inhibitor, while Mg2+ acts as an activator of the enzyme, and both actions are potentiated at acidic pHs. XI is also inhibited by XOS, with a decrease of 31.6% in XI activity in the presence of 7.0 g/L of xylobiose. For this reason, it was decided to evaluate SIF process with a recombinant yeast, capable of expressing XI. In batch runs, GSE16-T18 (T18) yeast encapsulated in alginate gel was capable to ferment xylose efficiently, consuming 40 g/L of xylose in 4 h and producing 14.4 g/L of ethanol, with yield of 0.422 g/g and productivity of 3.61 g/L.h. Calcium alginate gel encapsulation also contributed to protect yeast from the action of inhibitors, such as acetic acid. The encapsulated T18 was able to perform 10 consecutive cycles in repeated batch (yeast extract-peptone medium with 40 g/L of xylose), keeping the same productivity and high yields. It also fermented efficiently sugarcane bagasse hydrolysate, containing 60 g/L of fermentable sugars and high grade of inhibitors. The modified yeast to be more tolerant to acetic acid, GSE16-T18 HAA1, was also studied, exhibiting superior performance in comparison to T18 for hydrolysate fermentations. Continuous experiments were conducted in a fixed bed reactor using the T18-HAA1 yeast immobilized, with different xylose concentrations (40, 60, 80 and 120 g/L) in the feed medium. The reactor was operated up to 15 days, without bacterial contamination, with yield of 0.45 g/g, productivity of 4.8 g/L.h and selectivity of 31 gethanol/gxylitol (60 g/L of xylose in the feed). For the concentrations higher than 60 g/L, the conversion decreased after 4 days of continuous operation, indicating loss of cell viability due to hazardous effect of ethanol when present at 30 g/L or more, as well as limitation of oxygen and nutrients in the system. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-10-31T16:41:50Z |
dc.date.available.fl_str_mv |
2017-10-31T16:41:50Z |
dc.date.issued.fl_str_mv |
2017-03-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MILESSI, Thais Suzane dos Santos. Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas. 2017. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9179. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/9179 |
identifier_str_mv |
MILESSI, Thais Suzane dos Santos. Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas. 2017. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9179. |
url |
https://repositorio.ufscar.br/handle/ufscar/9179 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
87b60e6c-591e-4a38-94f3-e75e2beebea0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química - PPGEQ |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/9179/1/TeseTSSM.pdf https://repositorio.ufscar.br/bitstream/ufscar/9179/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/9179/5/TeseTSSM.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/9179/6/TeseTSSM.pdf.jpg |
bitstream.checksum.fl_str_mv |
4ef26b2b65e46560d905cc700258cd0d ae0398b6f8b235e40ad82cba6c50031d 4fd3c9a5787ec894ff7ef9c19eece380 185c0a0c366991e6aa25894719329008 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715581917986816 |