Modeling survival data based on a reparameterized weighted Lindley distribution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/16478 |
Resumo: | In this work, we propose different statistical modeling for survival data based on a reparameterized weighted Lindley distribution. Initially, we present this distribution and study its mathematical properties, maximum likelihood estimation, and numerical simulations. Then, we propose a novel frailty model by using the reparameterized weighted Lindley distribution for modeling unobserved heterogeneity in univariate survival data. The frailty is introduced multiplicatively on the baseline hazard function. We obtain unconditional survival and hazard functions through the Laplace transform function of the frailty distribution. We assume hazard functions of the Weibull and Gompertz distributions as the baseline hazard functions and use the maximum likelihood method for estimating the resulting model parameters. Simulation studies are further performed to verify the behavior of maximum likelihood estimators under different proportions of right-censoring and to assess the performance of the likelihood ratio test to detect unobserved heterogeneity in different sample sizes. Also, we propose a frailty long-term model where the frailties are described by reparameterized weighted Lindley distribution. An advantage of the proposed model is to jointly model the heterogeneity among patients by their frailties and the presence of a cured fraction of them. We assume that the unknown number of competing causes that can influence the survival time follows a negative binomial distribution and that the time for the $k$-th competing cause to produce the event of interest follows the reparameterized weighted Lindley frailty model with Weibull baseline distribution. Some special cases of the model are presented. The cure fraction is modeled by using the logit link function. Again, we use the maximum likelihood method under random right-censoring to estimate the proposed model parameters. Further, we present a Monte Carlo simulation study to verify the maximum likelihood estimators' behavior assuming different sample sizes and censoring proportions. Finally, we extend the non-proportional generalized time-dependent logistic regression model by incorporating reparameterized weighted Lindley frailties. This proposed modeling has several important characteristics, such as non-proportional hazards, identifies the presence of long-term survivors without the addition of new parameters, captures the unobserved heterogeneity, allows the intersection of survival curves, and allows decreasing or unimodal hazard function. Again, parameter estimation is performed using the maximum likelihood method. Monte Carlo simulation studies are conducted to evaluate the asymptotic properties of the estimators as well as some properties of the model. The potentiality of all the proposed models is analyzed by employing real datasets and model comparisons are performed. |
id |
SCAR_d1a50a29caff0d2cb01ce9891748d38b |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/16478 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Mota, Alex LealNeto, Francisco Louzadahttp://lattes.cnpq.br/0994050156415890Tomazella, Vera Lucia Damascenohttp://lattes.cnpq.br/8870556978317000http://lattes.cnpq.br/6433034495874590bb42a8e4-41ab-4d59-a337-6769b139f1672022-08-10T11:58:23Z2022-08-10T11:58:23Z2022-06-24MOTA, Alex Leal. Modeling survival data based on a reparameterized weighted Lindley distribution. 2022. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16478.https://repositorio.ufscar.br/handle/ufscar/16478In this work, we propose different statistical modeling for survival data based on a reparameterized weighted Lindley distribution. Initially, we present this distribution and study its mathematical properties, maximum likelihood estimation, and numerical simulations. Then, we propose a novel frailty model by using the reparameterized weighted Lindley distribution for modeling unobserved heterogeneity in univariate survival data. The frailty is introduced multiplicatively on the baseline hazard function. We obtain unconditional survival and hazard functions through the Laplace transform function of the frailty distribution. We assume hazard functions of the Weibull and Gompertz distributions as the baseline hazard functions and use the maximum likelihood method for estimating the resulting model parameters. Simulation studies are further performed to verify the behavior of maximum likelihood estimators under different proportions of right-censoring and to assess the performance of the likelihood ratio test to detect unobserved heterogeneity in different sample sizes. Also, we propose a frailty long-term model where the frailties are described by reparameterized weighted Lindley distribution. An advantage of the proposed model is to jointly model the heterogeneity among patients by their frailties and the presence of a cured fraction of them. We assume that the unknown number of competing causes that can influence the survival time follows a negative binomial distribution and that the time for the $k$-th competing cause to produce the event of interest follows the reparameterized weighted Lindley frailty model with Weibull baseline distribution. Some special cases of the model are presented. The cure fraction is modeled by using the logit link function. Again, we use the maximum likelihood method under random right-censoring to estimate the proposed model parameters. Further, we present a Monte Carlo simulation study to verify the maximum likelihood estimators' behavior assuming different sample sizes and censoring proportions. Finally, we extend the non-proportional generalized time-dependent logistic regression model by incorporating reparameterized weighted Lindley frailties. This proposed modeling has several important characteristics, such as non-proportional hazards, identifies the presence of long-term survivors without the addition of new parameters, captures the unobserved heterogeneity, allows the intersection of survival curves, and allows decreasing or unimodal hazard function. Again, parameter estimation is performed using the maximum likelihood method. Monte Carlo simulation studies are conducted to evaluate the asymptotic properties of the estimators as well as some properties of the model. The potentiality of all the proposed models is analyzed by employing real datasets and model comparisons are performed.Neste trabalho, propomos diferentes modelagens estatísticas para dados de sobrevivência baseadas em uma distribuição de Lindley ponderada reparametrizada. Inicialmente, apresentamos esta distribuição e estudamos suas propriedades matemáticas, estimação de máxima verossimilhança e simulações numéricas. Em seguida, propomos um novo modelo de fragilidade usando a distribuição de Lindley ponderada reparametrizada para modelar a heterogeneidade não observada em dados de sobrevivência univariados. A fragilidade é introduzida multiplicativamente na função de risco de base. Obtemos as funções de sobrevivência e risco não condicionais através da função transformada de Laplace da distribuição de fragilidade. Assumimos as funções de risco das distribuições Weibull e Gompertz como as funções de risco de base e usamos o método de máxima verossimilhança para estimar os parâmetros dos modelos resultantes. Estudos de simulação são realizados para verificar o comportamento dos estimadores propostos sob diferentes proporções de censura à direita e para avaliar o desempenho do teste da razão de verossimilhança para detectar heterogeneidade não observada em diferentes tamanhos amostrais. Além disso, propomos um modelo de longa duração com fragilidade Lindley ponderada reparametrizada. Uma vantagem do modelo proposto é modelar conjuntamente a heterogeneidade entre os pacientes por suas fragilidades e a presença de uma fração curada. Assumimos que o número desconhecido de causas competitivas que podem influenciar o tempo de sobrevivência segue uma distribuição binomial negativa e que o tempo para a $k$-ésima causa competitiva produzir o evento de interesse segue o modelo de fragilidade de Lindley ponderado reparametrizado com distribuição de base de Weibull. Alguns casos especiais do modelo são apresentados e a fração de cura é modelada usando a função de ligação logit. Novamente, usamos o método de máxima verossimilhança sob censura aleatória à direita para estimar os parâmetros do modelo proposto. Além disso, apresentamos estudos de simulação de Monte Carlo para verificar o comportamento dos estimadores de máxima verossimilhança assumindo diferentes tamanhos de amostra e proporções de censura. Finalmente, estendemos o modelo de regressão logística generalizado dependente do tempo incorporando fragilidades de Lindley ponderadas reparametrizadas. Essa modelagem proposta possui várias características importantes, tais como riscos não proporcionais, identifica a presença de sobreviventes de longa duração sem a adição de novos parâmetros, captura a heterogeneidade não observada, permite a interseção de curvas de sobrevivência e permite função de risco decrescente ou unimodal. Novamente, a estimação de parâmetros é realizada usando o método de máxima verossimilhança. Estudos de simulação de Monte Carlo são conduzidos para avaliar as propriedades assintóticas dos estimadores, bem como algumas propriedades do modelo. A potencialidade de todos os modelos propostos é analisada empregando conjuntos de dados reais e comparações de modelos são realizadas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: código de financiamento - 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDistribuição Lindley ponderada reparametrizadaFração de curaMáxima verossimilhançaModelo de fragilidadeModelo logístico generalizado dependente do tempoRiscos não proporcionaisCure fractionFrailty modelGeneralized time-dependent logistic modelMaximum likelihood methodNon-proportional hazardsReparameterized weighted Lindley distributionCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAModeling survival data based on a reparameterized weighted Lindley distributionModelagem de dados de sobrevivência baseada em uma distribuição de Lindley ponderada reparametrizadainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6006003c9d3fdc-335a-4398-8286-aa5d7b5a2ee0reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese_Alex Mota_Revisada.pdfTese_Alex Mota_Revisada.pdfTexto principalapplication/pdf6821547https://repositorio.ufscar.br/bitstream/ufscar/16478/1/Tese_Alex%20Mota_Revisada.pdf45b51090531d51cc052b441fc5ce4c86MD51Carta comprovante assinada pelo orientador.pdfCarta comprovante assinada pelo orientador.pdfAutorização do Orientadorapplication/pdf300494https://repositorio.ufscar.br/bitstream/ufscar/16478/2/Carta%20comprovante%20assinada%20pelo%20orientador.pdf184611e12a8702dbcc3ea3162ef76d43MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/16478/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTTese_Alex Mota_Revisada.pdf.txtTese_Alex Mota_Revisada.pdf.txtExtracted texttext/plain296859https://repositorio.ufscar.br/bitstream/ufscar/16478/4/Tese_Alex%20Mota_Revisada.pdf.txt4fa559f3364eb775e49bc926e7123555MD54Carta comprovante assinada pelo orientador.pdf.txtCarta comprovante assinada pelo orientador.pdf.txtExtracted texttext/plain1194https://repositorio.ufscar.br/bitstream/ufscar/16478/6/Carta%20comprovante%20assinada%20pelo%20orientador.pdf.txt52ffca2e2b7df910fae3809a6d9da172MD56THUMBNAILTese_Alex Mota_Revisada.pdf.jpgTese_Alex Mota_Revisada.pdf.jpgIM Thumbnailimage/jpeg15019https://repositorio.ufscar.br/bitstream/ufscar/16478/5/Tese_Alex%20Mota_Revisada.pdf.jpg307c034e64f38e9552915216c93ab8b9MD55Carta comprovante assinada pelo orientador.pdf.jpgCarta comprovante assinada pelo orientador.pdf.jpgIM Thumbnailimage/jpeg8339https://repositorio.ufscar.br/bitstream/ufscar/16478/7/Carta%20comprovante%20assinada%20pelo%20orientador.pdf.jpgbfc419e502614d0161f69c0e298d525bMD57ufscar/164782023-09-18 18:32:22.083oai:repositorio.ufscar.br:ufscar/16478Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:22Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Modeling survival data based on a reparameterized weighted Lindley distribution |
dc.title.alternative.eng.fl_str_mv |
Modelagem de dados de sobrevivência baseada em uma distribuição de Lindley ponderada reparametrizada |
title |
Modeling survival data based on a reparameterized weighted Lindley distribution |
spellingShingle |
Modeling survival data based on a reparameterized weighted Lindley distribution Mota, Alex Leal Distribuição Lindley ponderada reparametrizada Fração de cura Máxima verossimilhança Modelo de fragilidade Modelo logístico generalizado dependente do tempo Riscos não proporcionais Cure fraction Frailty model Generalized time-dependent logistic model Maximum likelihood method Non-proportional hazards Reparameterized weighted Lindley distribution CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
title_short |
Modeling survival data based on a reparameterized weighted Lindley distribution |
title_full |
Modeling survival data based on a reparameterized weighted Lindley distribution |
title_fullStr |
Modeling survival data based on a reparameterized weighted Lindley distribution |
title_full_unstemmed |
Modeling survival data based on a reparameterized weighted Lindley distribution |
title_sort |
Modeling survival data based on a reparameterized weighted Lindley distribution |
author |
Mota, Alex Leal |
author_facet |
Mota, Alex Leal |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/6433034495874590 |
dc.contributor.author.fl_str_mv |
Mota, Alex Leal |
dc.contributor.advisor1.fl_str_mv |
Neto, Francisco Louzada |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0994050156415890 |
dc.contributor.advisor-co1.fl_str_mv |
Tomazella, Vera Lucia Damasceno |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/8870556978317000 |
dc.contributor.authorID.fl_str_mv |
bb42a8e4-41ab-4d59-a337-6769b139f167 |
contributor_str_mv |
Neto, Francisco Louzada Tomazella, Vera Lucia Damasceno |
dc.subject.por.fl_str_mv |
Distribuição Lindley ponderada reparametrizada Fração de cura Máxima verossimilhança Modelo de fragilidade Modelo logístico generalizado dependente do tempo Riscos não proporcionais |
topic |
Distribuição Lindley ponderada reparametrizada Fração de cura Máxima verossimilhança Modelo de fragilidade Modelo logístico generalizado dependente do tempo Riscos não proporcionais Cure fraction Frailty model Generalized time-dependent logistic model Maximum likelihood method Non-proportional hazards Reparameterized weighted Lindley distribution CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
dc.subject.eng.fl_str_mv |
Cure fraction Frailty model Generalized time-dependent logistic model Maximum likelihood method Non-proportional hazards Reparameterized weighted Lindley distribution |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
description |
In this work, we propose different statistical modeling for survival data based on a reparameterized weighted Lindley distribution. Initially, we present this distribution and study its mathematical properties, maximum likelihood estimation, and numerical simulations. Then, we propose a novel frailty model by using the reparameterized weighted Lindley distribution for modeling unobserved heterogeneity in univariate survival data. The frailty is introduced multiplicatively on the baseline hazard function. We obtain unconditional survival and hazard functions through the Laplace transform function of the frailty distribution. We assume hazard functions of the Weibull and Gompertz distributions as the baseline hazard functions and use the maximum likelihood method for estimating the resulting model parameters. Simulation studies are further performed to verify the behavior of maximum likelihood estimators under different proportions of right-censoring and to assess the performance of the likelihood ratio test to detect unobserved heterogeneity in different sample sizes. Also, we propose a frailty long-term model where the frailties are described by reparameterized weighted Lindley distribution. An advantage of the proposed model is to jointly model the heterogeneity among patients by their frailties and the presence of a cured fraction of them. We assume that the unknown number of competing causes that can influence the survival time follows a negative binomial distribution and that the time for the $k$-th competing cause to produce the event of interest follows the reparameterized weighted Lindley frailty model with Weibull baseline distribution. Some special cases of the model are presented. The cure fraction is modeled by using the logit link function. Again, we use the maximum likelihood method under random right-censoring to estimate the proposed model parameters. Further, we present a Monte Carlo simulation study to verify the maximum likelihood estimators' behavior assuming different sample sizes and censoring proportions. Finally, we extend the non-proportional generalized time-dependent logistic regression model by incorporating reparameterized weighted Lindley frailties. This proposed modeling has several important characteristics, such as non-proportional hazards, identifies the presence of long-term survivors without the addition of new parameters, captures the unobserved heterogeneity, allows the intersection of survival curves, and allows decreasing or unimodal hazard function. Again, parameter estimation is performed using the maximum likelihood method. Monte Carlo simulation studies are conducted to evaluate the asymptotic properties of the estimators as well as some properties of the model. The potentiality of all the proposed models is analyzed by employing real datasets and model comparisons are performed. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-08-10T11:58:23Z |
dc.date.available.fl_str_mv |
2022-08-10T11:58:23Z |
dc.date.issued.fl_str_mv |
2022-06-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MOTA, Alex Leal. Modeling survival data based on a reparameterized weighted Lindley distribution. 2022. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16478. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/16478 |
identifier_str_mv |
MOTA, Alex Leal. Modeling survival data based on a reparameterized weighted Lindley distribution. 2022. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16478. |
url |
https://repositorio.ufscar.br/handle/ufscar/16478 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
3c9d3fdc-335a-4398-8286-aa5d7b5a2ee0 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/16478/1/Tese_Alex%20Mota_Revisada.pdf https://repositorio.ufscar.br/bitstream/ufscar/16478/2/Carta%20comprovante%20assinada%20pelo%20orientador.pdf https://repositorio.ufscar.br/bitstream/ufscar/16478/3/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/16478/4/Tese_Alex%20Mota_Revisada.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/16478/6/Carta%20comprovante%20assinada%20pelo%20orientador.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/16478/5/Tese_Alex%20Mota_Revisada.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/16478/7/Carta%20comprovante%20assinada%20pelo%20orientador.pdf.jpg |
bitstream.checksum.fl_str_mv |
45b51090531d51cc052b441fc5ce4c86 184611e12a8702dbcc3ea3162ef76d43 e39d27027a6cc9cb039ad269a5db8e34 4fa559f3364eb775e49bc926e7123555 52ffca2e2b7df910fae3809a6d9da172 307c034e64f38e9552915216c93ab8b9 bfc419e502614d0161f69c0e298d525b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715651195305984 |