Modeling survival data based on a reparameterized weighted Lindley distribution

Detalhes bibliográficos
Autor(a) principal: Mota, Alex Leal
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/16478
Resumo: In this work, we propose different statistical modeling for survival data based on a reparameterized weighted Lindley distribution. Initially, we present this distribution and study its mathematical properties, maximum likelihood estimation, and numerical simulations. Then, we propose a novel frailty model by using the reparameterized weighted Lindley distribution for modeling unobserved heterogeneity in univariate survival data. The frailty is introduced multiplicatively on the baseline hazard function. We obtain unconditional survival and hazard functions through the Laplace transform function of the frailty distribution. We assume hazard functions of the Weibull and Gompertz distributions as the baseline hazard functions and use the maximum likelihood method for estimating the resulting model parameters. Simulation studies are further performed to verify the behavior of maximum likelihood estimators under different proportions of right-censoring and to assess the performance of the likelihood ratio test to detect unobserved heterogeneity in different sample sizes. Also, we propose a frailty long-term model where the frailties are described by reparameterized weighted Lindley distribution. An advantage of the proposed model is to jointly model the heterogeneity among patients by their frailties and the presence of a cured fraction of them. We assume that the unknown number of competing causes that can influence the survival time follows a negative binomial distribution and that the time for the $k$-th competing cause to produce the event of interest follows the reparameterized weighted Lindley frailty model with Weibull baseline distribution. Some special cases of the model are presented. The cure fraction is modeled by using the logit link function. Again, we use the maximum likelihood method under random right-censoring to estimate the proposed model parameters. Further, we present a Monte Carlo simulation study to verify the maximum likelihood estimators' behavior assuming different sample sizes and censoring proportions. Finally, we extend the non-proportional generalized time-dependent logistic regression model by incorporating reparameterized weighted Lindley frailties. This proposed modeling has several important characteristics, such as non-proportional hazards, identifies the presence of long-term survivors without the addition of new parameters, captures the unobserved heterogeneity, allows the intersection of survival curves, and allows decreasing or unimodal hazard function. Again, parameter estimation is performed using the maximum likelihood method. Monte Carlo simulation studies are conducted to evaluate the asymptotic properties of the estimators as well as some properties of the model. The potentiality of all the proposed models is analyzed by employing real datasets and model comparisons are performed.
id SCAR_d1a50a29caff0d2cb01ce9891748d38b
oai_identifier_str oai:repositorio.ufscar.br:ufscar/16478
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Mota, Alex LealNeto, Francisco Louzadahttp://lattes.cnpq.br/0994050156415890Tomazella, Vera Lucia Damascenohttp://lattes.cnpq.br/8870556978317000http://lattes.cnpq.br/6433034495874590bb42a8e4-41ab-4d59-a337-6769b139f1672022-08-10T11:58:23Z2022-08-10T11:58:23Z2022-06-24MOTA, Alex Leal. Modeling survival data based on a reparameterized weighted Lindley distribution. 2022. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16478.https://repositorio.ufscar.br/handle/ufscar/16478In this work, we propose different statistical modeling for survival data based on a reparameterized weighted Lindley distribution. Initially, we present this distribution and study its mathematical properties, maximum likelihood estimation, and numerical simulations. Then, we propose a novel frailty model by using the reparameterized weighted Lindley distribution for modeling unobserved heterogeneity in univariate survival data. The frailty is introduced multiplicatively on the baseline hazard function. We obtain unconditional survival and hazard functions through the Laplace transform function of the frailty distribution. We assume hazard functions of the Weibull and Gompertz distributions as the baseline hazard functions and use the maximum likelihood method for estimating the resulting model parameters. Simulation studies are further performed to verify the behavior of maximum likelihood estimators under different proportions of right-censoring and to assess the performance of the likelihood ratio test to detect unobserved heterogeneity in different sample sizes. Also, we propose a frailty long-term model where the frailties are described by reparameterized weighted Lindley distribution. An advantage of the proposed model is to jointly model the heterogeneity among patients by their frailties and the presence of a cured fraction of them. We assume that the unknown number of competing causes that can influence the survival time follows a negative binomial distribution and that the time for the $k$-th competing cause to produce the event of interest follows the reparameterized weighted Lindley frailty model with Weibull baseline distribution. Some special cases of the model are presented. The cure fraction is modeled by using the logit link function. Again, we use the maximum likelihood method under random right-censoring to estimate the proposed model parameters. Further, we present a Monte Carlo simulation study to verify the maximum likelihood estimators' behavior assuming different sample sizes and censoring proportions. Finally, we extend the non-proportional generalized time-dependent logistic regression model by incorporating reparameterized weighted Lindley frailties. This proposed modeling has several important characteristics, such as non-proportional hazards, identifies the presence of long-term survivors without the addition of new parameters, captures the unobserved heterogeneity, allows the intersection of survival curves, and allows decreasing or unimodal hazard function. Again, parameter estimation is performed using the maximum likelihood method. Monte Carlo simulation studies are conducted to evaluate the asymptotic properties of the estimators as well as some properties of the model. The potentiality of all the proposed models is analyzed by employing real datasets and model comparisons are performed.Neste trabalho, propomos diferentes modelagens estatísticas para dados de sobrevivência baseadas em uma distribuição de Lindley ponderada reparametrizada. Inicialmente, apresentamos esta distribuição e estudamos suas propriedades matemáticas, estimação de máxima verossimilhança e simulações numéricas. Em seguida, propomos um novo modelo de fragilidade usando a distribuição de Lindley ponderada reparametrizada para modelar a heterogeneidade não observada em dados de sobrevivência univariados. A fragilidade é introduzida multiplicativamente na função de risco de base. Obtemos as funções de sobrevivência e risco não condicionais através da função transformada de Laplace da distribuição de fragilidade. Assumimos as funções de risco das distribuições Weibull e Gompertz como as funções de risco de base e usamos o método de máxima verossimilhança para estimar os parâmetros dos modelos resultantes. Estudos de simulação são realizados para verificar o comportamento dos estimadores propostos sob diferentes proporções de censura à direita e para avaliar o desempenho do teste da razão de verossimilhança para detectar heterogeneidade não observada em diferentes tamanhos amostrais. Além disso, propomos um modelo de longa duração com fragilidade Lindley ponderada reparametrizada. Uma vantagem do modelo proposto é modelar conjuntamente a heterogeneidade entre os pacientes por suas fragilidades e a presença de uma fração curada. Assumimos que o número desconhecido de causas competitivas que podem influenciar o tempo de sobrevivência segue uma distribuição binomial negativa e que o tempo para a $k$-ésima causa competitiva produzir o evento de interesse segue o modelo de fragilidade de Lindley ponderado reparametrizado com distribuição de base de Weibull. Alguns casos especiais do modelo são apresentados e a fração de cura é modelada usando a função de ligação logit. Novamente, usamos o método de máxima verossimilhança sob censura aleatória à direita para estimar os parâmetros do modelo proposto. Além disso, apresentamos estudos de simulação de Monte Carlo para verificar o comportamento dos estimadores de máxima verossimilhança assumindo diferentes tamanhos de amostra e proporções de censura. Finalmente, estendemos o modelo de regressão logística generalizado dependente do tempo incorporando fragilidades de Lindley ponderadas reparametrizadas. Essa modelagem proposta possui várias características importantes, tais como riscos não proporcionais, identifica a presença de sobreviventes de longa duração sem a adição de novos parâmetros, captura a heterogeneidade não observada, permite a interseção de curvas de sobrevivência e permite função de risco decrescente ou unimodal. Novamente, a estimação de parâmetros é realizada usando o método de máxima verossimilhança. Estudos de simulação de Monte Carlo são conduzidos para avaliar as propriedades assintóticas dos estimadores, bem como algumas propriedades do modelo. A potencialidade de todos os modelos propostos é analisada empregando conjuntos de dados reais e comparações de modelos são realizadas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: código de financiamento - 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDistribuição Lindley ponderada reparametrizadaFração de curaMáxima verossimilhançaModelo de fragilidadeModelo logístico generalizado dependente do tempoRiscos não proporcionaisCure fractionFrailty modelGeneralized time-dependent logistic modelMaximum likelihood methodNon-proportional hazardsReparameterized weighted Lindley distributionCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAModeling survival data based on a reparameterized weighted Lindley distributionModelagem de dados de sobrevivência baseada em uma distribuição de Lindley ponderada reparametrizadainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6006003c9d3fdc-335a-4398-8286-aa5d7b5a2ee0reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese_Alex Mota_Revisada.pdfTese_Alex Mota_Revisada.pdfTexto principalapplication/pdf6821547https://repositorio.ufscar.br/bitstream/ufscar/16478/1/Tese_Alex%20Mota_Revisada.pdf45b51090531d51cc052b441fc5ce4c86MD51Carta comprovante assinada pelo orientador.pdfCarta comprovante assinada pelo orientador.pdfAutorização do Orientadorapplication/pdf300494https://repositorio.ufscar.br/bitstream/ufscar/16478/2/Carta%20comprovante%20assinada%20pelo%20orientador.pdf184611e12a8702dbcc3ea3162ef76d43MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/16478/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTTese_Alex Mota_Revisada.pdf.txtTese_Alex Mota_Revisada.pdf.txtExtracted texttext/plain296859https://repositorio.ufscar.br/bitstream/ufscar/16478/4/Tese_Alex%20Mota_Revisada.pdf.txt4fa559f3364eb775e49bc926e7123555MD54Carta comprovante assinada pelo orientador.pdf.txtCarta comprovante assinada pelo orientador.pdf.txtExtracted texttext/plain1194https://repositorio.ufscar.br/bitstream/ufscar/16478/6/Carta%20comprovante%20assinada%20pelo%20orientador.pdf.txt52ffca2e2b7df910fae3809a6d9da172MD56THUMBNAILTese_Alex Mota_Revisada.pdf.jpgTese_Alex Mota_Revisada.pdf.jpgIM Thumbnailimage/jpeg15019https://repositorio.ufscar.br/bitstream/ufscar/16478/5/Tese_Alex%20Mota_Revisada.pdf.jpg307c034e64f38e9552915216c93ab8b9MD55Carta comprovante assinada pelo orientador.pdf.jpgCarta comprovante assinada pelo orientador.pdf.jpgIM Thumbnailimage/jpeg8339https://repositorio.ufscar.br/bitstream/ufscar/16478/7/Carta%20comprovante%20assinada%20pelo%20orientador.pdf.jpgbfc419e502614d0161f69c0e298d525bMD57ufscar/164782023-09-18 18:32:22.083oai:repositorio.ufscar.br:ufscar/16478Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:22Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Modeling survival data based on a reparameterized weighted Lindley distribution
dc.title.alternative.eng.fl_str_mv Modelagem de dados de sobrevivência baseada em uma distribuição de Lindley ponderada reparametrizada
title Modeling survival data based on a reparameterized weighted Lindley distribution
spellingShingle Modeling survival data based on a reparameterized weighted Lindley distribution
Mota, Alex Leal
Distribuição Lindley ponderada reparametrizada
Fração de cura
Máxima verossimilhança
Modelo de fragilidade
Modelo logístico generalizado dependente do tempo
Riscos não proporcionais
Cure fraction
Frailty model
Generalized time-dependent logistic model
Maximum likelihood method
Non-proportional hazards
Reparameterized weighted Lindley distribution
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Modeling survival data based on a reparameterized weighted Lindley distribution
title_full Modeling survival data based on a reparameterized weighted Lindley distribution
title_fullStr Modeling survival data based on a reparameterized weighted Lindley distribution
title_full_unstemmed Modeling survival data based on a reparameterized weighted Lindley distribution
title_sort Modeling survival data based on a reparameterized weighted Lindley distribution
author Mota, Alex Leal
author_facet Mota, Alex Leal
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/6433034495874590
dc.contributor.author.fl_str_mv Mota, Alex Leal
dc.contributor.advisor1.fl_str_mv Neto, Francisco Louzada
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0994050156415890
dc.contributor.advisor-co1.fl_str_mv Tomazella, Vera Lucia Damasceno
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/8870556978317000
dc.contributor.authorID.fl_str_mv bb42a8e4-41ab-4d59-a337-6769b139f167
contributor_str_mv Neto, Francisco Louzada
Tomazella, Vera Lucia Damasceno
dc.subject.por.fl_str_mv Distribuição Lindley ponderada reparametrizada
Fração de cura
Máxima verossimilhança
Modelo de fragilidade
Modelo logístico generalizado dependente do tempo
Riscos não proporcionais
topic Distribuição Lindley ponderada reparametrizada
Fração de cura
Máxima verossimilhança
Modelo de fragilidade
Modelo logístico generalizado dependente do tempo
Riscos não proporcionais
Cure fraction
Frailty model
Generalized time-dependent logistic model
Maximum likelihood method
Non-proportional hazards
Reparameterized weighted Lindley distribution
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.eng.fl_str_mv Cure fraction
Frailty model
Generalized time-dependent logistic model
Maximum likelihood method
Non-proportional hazards
Reparameterized weighted Lindley distribution
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description In this work, we propose different statistical modeling for survival data based on a reparameterized weighted Lindley distribution. Initially, we present this distribution and study its mathematical properties, maximum likelihood estimation, and numerical simulations. Then, we propose a novel frailty model by using the reparameterized weighted Lindley distribution for modeling unobserved heterogeneity in univariate survival data. The frailty is introduced multiplicatively on the baseline hazard function. We obtain unconditional survival and hazard functions through the Laplace transform function of the frailty distribution. We assume hazard functions of the Weibull and Gompertz distributions as the baseline hazard functions and use the maximum likelihood method for estimating the resulting model parameters. Simulation studies are further performed to verify the behavior of maximum likelihood estimators under different proportions of right-censoring and to assess the performance of the likelihood ratio test to detect unobserved heterogeneity in different sample sizes. Also, we propose a frailty long-term model where the frailties are described by reparameterized weighted Lindley distribution. An advantage of the proposed model is to jointly model the heterogeneity among patients by their frailties and the presence of a cured fraction of them. We assume that the unknown number of competing causes that can influence the survival time follows a negative binomial distribution and that the time for the $k$-th competing cause to produce the event of interest follows the reparameterized weighted Lindley frailty model with Weibull baseline distribution. Some special cases of the model are presented. The cure fraction is modeled by using the logit link function. Again, we use the maximum likelihood method under random right-censoring to estimate the proposed model parameters. Further, we present a Monte Carlo simulation study to verify the maximum likelihood estimators' behavior assuming different sample sizes and censoring proportions. Finally, we extend the non-proportional generalized time-dependent logistic regression model by incorporating reparameterized weighted Lindley frailties. This proposed modeling has several important characteristics, such as non-proportional hazards, identifies the presence of long-term survivors without the addition of new parameters, captures the unobserved heterogeneity, allows the intersection of survival curves, and allows decreasing or unimodal hazard function. Again, parameter estimation is performed using the maximum likelihood method. Monte Carlo simulation studies are conducted to evaluate the asymptotic properties of the estimators as well as some properties of the model. The potentiality of all the proposed models is analyzed by employing real datasets and model comparisons are performed.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-08-10T11:58:23Z
dc.date.available.fl_str_mv 2022-08-10T11:58:23Z
dc.date.issued.fl_str_mv 2022-06-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MOTA, Alex Leal. Modeling survival data based on a reparameterized weighted Lindley distribution. 2022. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16478.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/16478
identifier_str_mv MOTA, Alex Leal. Modeling survival data based on a reparameterized weighted Lindley distribution. 2022. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16478.
url https://repositorio.ufscar.br/handle/ufscar/16478
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 3c9d3fdc-335a-4398-8286-aa5d7b5a2ee0
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/16478/1/Tese_Alex%20Mota_Revisada.pdf
https://repositorio.ufscar.br/bitstream/ufscar/16478/2/Carta%20comprovante%20assinada%20pelo%20orientador.pdf
https://repositorio.ufscar.br/bitstream/ufscar/16478/3/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/16478/4/Tese_Alex%20Mota_Revisada.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/16478/6/Carta%20comprovante%20assinada%20pelo%20orientador.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/16478/5/Tese_Alex%20Mota_Revisada.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/16478/7/Carta%20comprovante%20assinada%20pelo%20orientador.pdf.jpg
bitstream.checksum.fl_str_mv 45b51090531d51cc052b441fc5ce4c86
184611e12a8702dbcc3ea3162ef76d43
e39d27027a6cc9cb039ad269a5db8e34
4fa559f3364eb775e49bc926e7123555
52ffca2e2b7df910fae3809a6d9da172
307c034e64f38e9552915216c93ab8b9
bfc419e502614d0161f69c0e298d525b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715651195305984