Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , |
Tipo de documento: | preprint |
Idioma: | eng |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/609 |
Resumo: | Introduction: Coronavirus disease 2019 (COVID-19) has become a global public health emergency with lethality ranging from 1% to 5%. This study aimed to identify active high-risk transmission clusters of COVID-19 in Sergipe. Methods: We performed a prospective space-time analysis using confirmed cases of COVID-19 during the first 7 weeks of the outbreak in Sergipe. Results: The prospective space-time statistic detected "active" and emerging spatio-temporal clusters comprising six municipalities in the south-central region of the state. Conclusions: The Geographic Information System (GIS) associated with spatio-temporal scan statistics can provide timely support for surveillance and assist in decision-making. |
id |
SCI-1_329daba442442e7767632db09b02648a |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/609 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implicationsCOVID-19Spatial analysisSpace-time clustersPandemicDisease surveillanceIntroduction: Coronavirus disease 2019 (COVID-19) has become a global public health emergency with lethality ranging from 1% to 5%. This study aimed to identify active high-risk transmission clusters of COVID-19 in Sergipe. Methods: We performed a prospective space-time analysis using confirmed cases of COVID-19 during the first 7 weeks of the outbreak in Sergipe. Results: The prospective space-time statistic detected "active" and emerging spatio-temporal clusters comprising six municipalities in the south-central region of the state. Conclusions: The Geographic Information System (GIS) associated with spatio-temporal scan statistics can provide timely support for surveillance and assist in decision-making.SciELO PreprintsSciELO PreprintsSciELO Preprints2020-05-27info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/60910.1590/0037-8682-0287-2020enghttps://preprints.scielo.org/index.php/scielo/article/view/609/787Copyright (c) 2020 Lucas Almeida Andrade, Dharliton Soares Gomes, Marco Aurélio de Oliveira Góes, Mércia Simone Feitosa de Souza, Daniela Cabral Pizzi Teixeira, Caíque Jordan Nunes Ribeiro, José Antônio Barreto Alves, Karina Conceição Gomes Machado de Araújo, Allan Dantas dos Santoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAndrade, Lucas AlmeidaGomes, Dharliton SoaresGóes, Marco Aurélio de OliveiraSouza, Mércia Simone Feitosa deTeixeira, Daniela Cabral PizziRibeiro, Caíque Jordan NunesAlves, José Antônio BarretoAraújo, Karina Conceição Gomes Machado deSantos, Allan Dantas dosreponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-05-27T19:51:23Zoai:ops.preprints.scielo.org:preprint/609Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-05-27T19:51:23SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications |
title |
Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications |
spellingShingle |
Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications Andrade, Lucas Almeida COVID-19 Spatial analysis Space-time clusters Pandemic Disease surveillance |
title_short |
Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications |
title_full |
Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications |
title_fullStr |
Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications |
title_full_unstemmed |
Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications |
title_sort |
Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications |
author |
Andrade, Lucas Almeida |
author_facet |
Andrade, Lucas Almeida Gomes, Dharliton Soares Góes, Marco Aurélio de Oliveira Souza, Mércia Simone Feitosa de Teixeira, Daniela Cabral Pizzi Ribeiro, Caíque Jordan Nunes Alves, José Antônio Barreto Araújo, Karina Conceição Gomes Machado de Santos, Allan Dantas dos |
author_role |
author |
author2 |
Gomes, Dharliton Soares Góes, Marco Aurélio de Oliveira Souza, Mércia Simone Feitosa de Teixeira, Daniela Cabral Pizzi Ribeiro, Caíque Jordan Nunes Alves, José Antônio Barreto Araújo, Karina Conceição Gomes Machado de Santos, Allan Dantas dos |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Andrade, Lucas Almeida Gomes, Dharliton Soares Góes, Marco Aurélio de Oliveira Souza, Mércia Simone Feitosa de Teixeira, Daniela Cabral Pizzi Ribeiro, Caíque Jordan Nunes Alves, José Antônio Barreto Araújo, Karina Conceição Gomes Machado de Santos, Allan Dantas dos |
dc.subject.por.fl_str_mv |
COVID-19 Spatial analysis Space-time clusters Pandemic Disease surveillance |
topic |
COVID-19 Spatial analysis Space-time clusters Pandemic Disease surveillance |
description |
Introduction: Coronavirus disease 2019 (COVID-19) has become a global public health emergency with lethality ranging from 1% to 5%. This study aimed to identify active high-risk transmission clusters of COVID-19 in Sergipe. Methods: We performed a prospective space-time analysis using confirmed cases of COVID-19 during the first 7 weeks of the outbreak in Sergipe. Results: The prospective space-time statistic detected "active" and emerging spatio-temporal clusters comprising six municipalities in the south-central region of the state. Conclusions: The Geographic Information System (GIS) associated with spatio-temporal scan statistics can provide timely support for surveillance and assist in decision-making. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-27 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/609 10.1590/0037-8682-0287-2020 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/609 |
identifier_str_mv |
10.1590/0037-8682-0287-2020 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/609/787 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047817961734144 |