Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications

Detalhes bibliográficos
Autor(a) principal: Andrade, Lucas Almeida
Data de Publicação: 2020
Outros Autores: Gomes, Dharliton Soares, Góes, Marco Aurélio de Oliveira, Souza, Mércia Simone Feitosa de, Teixeira, Daniela Cabral Pizzi, Ribeiro, Caíque Jordan Nunes, Alves, José Antônio Barreto, Araújo, Karina Conceição Gomes Machado de, Santos, Allan Dantas dos
Tipo de documento: preprint
Idioma: eng
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/609
Resumo: Introduction: Coronavirus disease 2019 (COVID-19) has become a global public health emergency with lethality ranging from 1% to 5%. This study aimed to identify active high-risk transmission clusters of COVID-19 in Sergipe. Methods: We performed a prospective space-time analysis using confirmed cases of COVID-19 during the first 7 weeks of the outbreak in Sergipe. Results: The prospective space-time statistic detected "active" and emerging spatio-temporal clusters comprising six municipalities in the south-central region of the state. Conclusions: The Geographic Information System (GIS) associated with spatio-temporal scan statistics can provide timely support for surveillance and assist in decision-making.
id SCI-1_329daba442442e7767632db09b02648a
oai_identifier_str oai:ops.preprints.scielo.org:preprint/609
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implicationsCOVID-19Spatial analysisSpace-time clustersPandemicDisease surveillanceIntroduction: Coronavirus disease 2019 (COVID-19) has become a global public health emergency with lethality ranging from 1% to 5%. This study aimed to identify active high-risk transmission clusters of COVID-19 in Sergipe. Methods: We performed a prospective space-time analysis using confirmed cases of COVID-19 during the first 7 weeks of the outbreak in Sergipe. Results: The prospective space-time statistic detected "active" and emerging spatio-temporal clusters comprising six municipalities in the south-central region of the state. Conclusions: The Geographic Information System (GIS) associated with spatio-temporal scan statistics can provide timely support for surveillance and assist in decision-making.SciELO PreprintsSciELO PreprintsSciELO Preprints2020-05-27info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/60910.1590/0037-8682-0287-2020enghttps://preprints.scielo.org/index.php/scielo/article/view/609/787Copyright (c) 2020 Lucas Almeida Andrade, Dharliton Soares Gomes, Marco Aurélio de Oliveira Góes, Mércia Simone Feitosa de Souza, Daniela Cabral Pizzi Teixeira, Caíque Jordan Nunes Ribeiro, José Antônio Barreto Alves, Karina Conceição Gomes Machado de Araújo, Allan Dantas dos Santoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAndrade, Lucas AlmeidaGomes, Dharliton SoaresGóes, Marco Aurélio de OliveiraSouza, Mércia Simone Feitosa deTeixeira, Daniela Cabral PizziRibeiro, Caíque Jordan NunesAlves, José Antônio BarretoAraújo, Karina Conceição Gomes Machado deSantos, Allan Dantas dosreponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-05-27T19:51:23Zoai:ops.preprints.scielo.org:preprint/609Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-05-27T19:51:23SciELO Preprints - SciELOfalse
dc.title.none.fl_str_mv Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications
title Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications
spellingShingle Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications
Andrade, Lucas Almeida
COVID-19
Spatial analysis
Space-time clusters
Pandemic
Disease surveillance
title_short Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications
title_full Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications
title_fullStr Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications
title_full_unstemmed Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications
title_sort Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications
author Andrade, Lucas Almeida
author_facet Andrade, Lucas Almeida
Gomes, Dharliton Soares
Góes, Marco Aurélio de Oliveira
Souza, Mércia Simone Feitosa de
Teixeira, Daniela Cabral Pizzi
Ribeiro, Caíque Jordan Nunes
Alves, José Antônio Barreto
Araújo, Karina Conceição Gomes Machado de
Santos, Allan Dantas dos
author_role author
author2 Gomes, Dharliton Soares
Góes, Marco Aurélio de Oliveira
Souza, Mércia Simone Feitosa de
Teixeira, Daniela Cabral Pizzi
Ribeiro, Caíque Jordan Nunes
Alves, José Antônio Barreto
Araújo, Karina Conceição Gomes Machado de
Santos, Allan Dantas dos
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Andrade, Lucas Almeida
Gomes, Dharliton Soares
Góes, Marco Aurélio de Oliveira
Souza, Mércia Simone Feitosa de
Teixeira, Daniela Cabral Pizzi
Ribeiro, Caíque Jordan Nunes
Alves, José Antônio Barreto
Araújo, Karina Conceição Gomes Machado de
Santos, Allan Dantas dos
dc.subject.por.fl_str_mv COVID-19
Spatial analysis
Space-time clusters
Pandemic
Disease surveillance
topic COVID-19
Spatial analysis
Space-time clusters
Pandemic
Disease surveillance
description Introduction: Coronavirus disease 2019 (COVID-19) has become a global public health emergency with lethality ranging from 1% to 5%. This study aimed to identify active high-risk transmission clusters of COVID-19 in Sergipe. Methods: We performed a prospective space-time analysis using confirmed cases of COVID-19 during the first 7 weeks of the outbreak in Sergipe. Results: The prospective space-time statistic detected "active" and emerging spatio-temporal clusters comprising six municipalities in the south-central region of the state. Conclusions: The Geographic Information System (GIS) associated with spatio-temporal scan statistics can provide timely support for surveillance and assist in decision-making.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-27
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/609
10.1590/0037-8682-0287-2020
url https://preprints.scielo.org/index.php/scielo/preprint/view/609
identifier_str_mv 10.1590/0037-8682-0287-2020
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/609/787
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:SciELO
instacron:SCI
instname_str SciELO
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - SciELO
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047817961734144