Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases

Detalhes bibliográficos
Autor(a) principal: Teixeira , Renato Azeredo
Data de Publicação: 2020
Outros Autores: Ishitani , Lenice Harumi, Marinho , Fátima, Junior, Elzo Pereira Pinto, Katikireddi , Srinivasa Vittal, Malta, Deborah Carvalho
Tipo de documento: preprint
Idioma: por
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/1611
Resumo: Objective: to propose a method for improving mortality estimates from non-communicable chronic diseases (NCD), including the redistribution of garbage causes in the municipalities of Brazil. Methods: Information Mortality System (SIM) data was used in the three-year periods from 2010 to 2012 and 2015 to 2017, with comparison of age standardized rates before and after correction of NCDs (cardiovascular, chronic respiratory, diabetes and neoplasms). The treatment for data correction included missing data, under-registration and causes of garbage redistribution (CG). The trienniums and Bayesian method were used to estimate mortality rates by improving the fluctuation caused by small numbers at the municipal level. Results: The CG redistribution stage showed greater weight in the corrections, about 40% in 2000 and about 20% from 2007, with stabilization from this year.. Throughout the historical series, the quality of information on causes of death has improved in Brazil, with heterogeneous results being observed among the municipalities. Conclusions: methodological studies that propose the correction and improvement of the SIM are essential for monitoring the mortality rates due to NCDs at regional levels. The methodological proposal applied, for the first time in real data from Brazilian municipalities, is challenging and deserves further improvements. Despite the improvement in the data, the use of rates with raw data is not recommended, as the treatment in the data, the method used in this study for the treatment of raw data showed a great impact on the final estimates.
id SCI-1_421b5534c6f9abcedeabfd2d4c6dfb6a
oai_identifier_str oai:ops.preprints.scielo.org:preprint/1611
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic DiseasesProposta metodológica para redistribuição de óbitos por causas garbage nas estimativas de mortalidade para Doenças Crônicas Não Transmissíveisdoenças não transmissíveisqualidade dos dados de mortalidadegarbage codespequenas áreasnoncommunicable diseasesquality of data mortalitygarbage codessmall areasObjective: to propose a method for improving mortality estimates from non-communicable chronic diseases (NCD), including the redistribution of garbage causes in the municipalities of Brazil. Methods: Information Mortality System (SIM) data was used in the three-year periods from 2010 to 2012 and 2015 to 2017, with comparison of age standardized rates before and after correction of NCDs (cardiovascular, chronic respiratory, diabetes and neoplasms). The treatment for data correction included missing data, under-registration and causes of garbage redistribution (CG). The trienniums and Bayesian method were used to estimate mortality rates by improving the fluctuation caused by small numbers at the municipal level. Results: The CG redistribution stage showed greater weight in the corrections, about 40% in 2000 and about 20% from 2007, with stabilization from this year.. Throughout the historical series, the quality of information on causes of death has improved in Brazil, with heterogeneous results being observed among the municipalities. Conclusions: methodological studies that propose the correction and improvement of the SIM are essential for monitoring the mortality rates due to NCDs at regional levels. The methodological proposal applied, for the first time in real data from Brazilian municipalities, is challenging and deserves further improvements. Despite the improvement in the data, the use of rates with raw data is not recommended, as the treatment in the data, the method used in this study for the treatment of raw data showed a great impact on the final estimates.Objetivo: propor método para melhoria das estimativas de mortalidade por doenças crônicas não transmissíveis (DCNT), incluindo a redistribuição de causas garbage nos municípios Brasileiros. Métodos: foram utilizados os dados do Sistema de Informações sobre Mortalidade (SIM) nos triênios de 2010-2012 e 2015-2017, comparadas com as taxas padronizadas por idade, antes e após correção das DCNT (cardiovasculares, respiratória crônicas, diabetes e neoplasias). O tratamento para correção dos dados abordou dados faltantes, sub-registro e redistribuição de causas garbage (CG). Foram utilizados triênios e método bayesiano para estimar as taxas de mortalidade diminuindo o efeito da flutuação provocada pelos pequenos números no nível municipal. Resultados: a etapa de redistribuição CG mostrou maior peso nas correções, cerca de 40% em 2000 e cerca de 20% a  partir de 2007, com estabilização a partir deste ano. Ao longo da série histórica a qualidade da informação sobre causas de morte melhorou no Brasil, sendo observados resultados heterogêneos nos municípios. Observou-se clusters com as maiores proporções de correção nas regiões Nordeste e Norte. O diabetes foi a causa com maior proporção de acréscimo (mais de 40% em 2000). Conclusões: estudos metodológicos que propõem correção e melhoria do SIM são essenciais para o monitoramento das taxas de mortalidade por DCNT em níveis regionais. A proposta metodológica aplicada, pela primeira vez em dados reais de municípios brasileiros, é desafiadora e merece maiores aprimoramentos. Apesar da melhora nos dados, o método utilizado neste estudo para o tratamento dos dados brutos mostrou um grande impacto nas estimativas finais.SciELO PreprintsSciELO PreprintsSciELO Preprints2020-12-15info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/161110.1590/1980-549720210004.supl.1porhttps://preprints.scielo.org/index.php/scielo/article/view/1611/2547Copyright (c) 2020 Renato Azeredo Teixeira , Lenice Harumi Ishitani , Fátima Marinho , Elzo Pereira Pinto Junior, Srinivasa Vittal Katikireddi , Deborah Carvalho Maltahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessTeixeira , Renato Azeredo Ishitani , Lenice Harumi Marinho , Fátima Junior, Elzo Pereira Pinto Katikireddi , Srinivasa Vittal Malta, Deborah Carvalho reponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-12-15T12:31:04Zoai:ops.preprints.scielo.org:preprint/1611Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-12-15T12:31:04SciELO Preprints - SciELOfalse
dc.title.none.fl_str_mv Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases
Proposta metodológica para redistribuição de óbitos por causas garbage nas estimativas de mortalidade para Doenças Crônicas Não Transmissíveis
title Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases
spellingShingle Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases
Teixeira , Renato Azeredo
doenças não transmissíveis
qualidade dos dados de mortalidade
garbage codes
pequenas áreas
noncommunicable diseases
quality of data mortality
garbage codes
small areas
title_short Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases
title_full Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases
title_fullStr Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases
title_full_unstemmed Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases
title_sort Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases
author Teixeira , Renato Azeredo
author_facet Teixeira , Renato Azeredo
Ishitani , Lenice Harumi
Marinho , Fátima
Junior, Elzo Pereira Pinto
Katikireddi , Srinivasa Vittal
Malta, Deborah Carvalho
author_role author
author2 Ishitani , Lenice Harumi
Marinho , Fátima
Junior, Elzo Pereira Pinto
Katikireddi , Srinivasa Vittal
Malta, Deborah Carvalho
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Teixeira , Renato Azeredo
Ishitani , Lenice Harumi
Marinho , Fátima
Junior, Elzo Pereira Pinto
Katikireddi , Srinivasa Vittal
Malta, Deborah Carvalho
dc.subject.por.fl_str_mv doenças não transmissíveis
qualidade dos dados de mortalidade
garbage codes
pequenas áreas
noncommunicable diseases
quality of data mortality
garbage codes
small areas
topic doenças não transmissíveis
qualidade dos dados de mortalidade
garbage codes
pequenas áreas
noncommunicable diseases
quality of data mortality
garbage codes
small areas
description Objective: to propose a method for improving mortality estimates from non-communicable chronic diseases (NCD), including the redistribution of garbage causes in the municipalities of Brazil. Methods: Information Mortality System (SIM) data was used in the three-year periods from 2010 to 2012 and 2015 to 2017, with comparison of age standardized rates before and after correction of NCDs (cardiovascular, chronic respiratory, diabetes and neoplasms). The treatment for data correction included missing data, under-registration and causes of garbage redistribution (CG). The trienniums and Bayesian method were used to estimate mortality rates by improving the fluctuation caused by small numbers at the municipal level. Results: The CG redistribution stage showed greater weight in the corrections, about 40% in 2000 and about 20% from 2007, with stabilization from this year.. Throughout the historical series, the quality of information on causes of death has improved in Brazil, with heterogeneous results being observed among the municipalities. Conclusions: methodological studies that propose the correction and improvement of the SIM are essential for monitoring the mortality rates due to NCDs at regional levels. The methodological proposal applied, for the first time in real data from Brazilian municipalities, is challenging and deserves further improvements. Despite the improvement in the data, the use of rates with raw data is not recommended, as the treatment in the data, the method used in this study for the treatment of raw data showed a great impact on the final estimates.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/1611
10.1590/1980-549720210004.supl.1
url https://preprints.scielo.org/index.php/scielo/preprint/view/1611
identifier_str_mv 10.1590/1980-549720210004.supl.1
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/1611/2547
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:SciELO
instacron:SCI
instname_str SciELO
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - SciELO
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047821408403456