Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | preprint |
Idioma: | por |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/1611 |
Resumo: | Objective: to propose a method for improving mortality estimates from non-communicable chronic diseases (NCD), including the redistribution of garbage causes in the municipalities of Brazil. Methods: Information Mortality System (SIM) data was used in the three-year periods from 2010 to 2012 and 2015 to 2017, with comparison of age standardized rates before and after correction of NCDs (cardiovascular, chronic respiratory, diabetes and neoplasms). The treatment for data correction included missing data, under-registration and causes of garbage redistribution (CG). The trienniums and Bayesian method were used to estimate mortality rates by improving the fluctuation caused by small numbers at the municipal level. Results: The CG redistribution stage showed greater weight in the corrections, about 40% in 2000 and about 20% from 2007, with stabilization from this year.. Throughout the historical series, the quality of information on causes of death has improved in Brazil, with heterogeneous results being observed among the municipalities. Conclusions: methodological studies that propose the correction and improvement of the SIM are essential for monitoring the mortality rates due to NCDs at regional levels. The methodological proposal applied, for the first time in real data from Brazilian municipalities, is challenging and deserves further improvements. Despite the improvement in the data, the use of rates with raw data is not recommended, as the treatment in the data, the method used in this study for the treatment of raw data showed a great impact on the final estimates. |
id |
SCI-1_421b5534c6f9abcedeabfd2d4c6dfb6a |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/1611 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic DiseasesProposta metodológica para redistribuição de óbitos por causas garbage nas estimativas de mortalidade para Doenças Crônicas Não Transmissíveisdoenças não transmissíveisqualidade dos dados de mortalidadegarbage codespequenas áreasnoncommunicable diseasesquality of data mortalitygarbage codessmall areasObjective: to propose a method for improving mortality estimates from non-communicable chronic diseases (NCD), including the redistribution of garbage causes in the municipalities of Brazil. Methods: Information Mortality System (SIM) data was used in the three-year periods from 2010 to 2012 and 2015 to 2017, with comparison of age standardized rates before and after correction of NCDs (cardiovascular, chronic respiratory, diabetes and neoplasms). The treatment for data correction included missing data, under-registration and causes of garbage redistribution (CG). The trienniums and Bayesian method were used to estimate mortality rates by improving the fluctuation caused by small numbers at the municipal level. Results: The CG redistribution stage showed greater weight in the corrections, about 40% in 2000 and about 20% from 2007, with stabilization from this year.. Throughout the historical series, the quality of information on causes of death has improved in Brazil, with heterogeneous results being observed among the municipalities. Conclusions: methodological studies that propose the correction and improvement of the SIM are essential for monitoring the mortality rates due to NCDs at regional levels. The methodological proposal applied, for the first time in real data from Brazilian municipalities, is challenging and deserves further improvements. Despite the improvement in the data, the use of rates with raw data is not recommended, as the treatment in the data, the method used in this study for the treatment of raw data showed a great impact on the final estimates.Objetivo: propor método para melhoria das estimativas de mortalidade por doenças crônicas não transmissíveis (DCNT), incluindo a redistribuição de causas garbage nos municípios Brasileiros. Métodos: foram utilizados os dados do Sistema de Informações sobre Mortalidade (SIM) nos triênios de 2010-2012 e 2015-2017, comparadas com as taxas padronizadas por idade, antes e após correção das DCNT (cardiovasculares, respiratória crônicas, diabetes e neoplasias). O tratamento para correção dos dados abordou dados faltantes, sub-registro e redistribuição de causas garbage (CG). Foram utilizados triênios e método bayesiano para estimar as taxas de mortalidade diminuindo o efeito da flutuação provocada pelos pequenos números no nível municipal. Resultados: a etapa de redistribuição CG mostrou maior peso nas correções, cerca de 40% em 2000 e cerca de 20% a partir de 2007, com estabilização a partir deste ano. Ao longo da série histórica a qualidade da informação sobre causas de morte melhorou no Brasil, sendo observados resultados heterogêneos nos municípios. Observou-se clusters com as maiores proporções de correção nas regiões Nordeste e Norte. O diabetes foi a causa com maior proporção de acréscimo (mais de 40% em 2000). Conclusões: estudos metodológicos que propõem correção e melhoria do SIM são essenciais para o monitoramento das taxas de mortalidade por DCNT em níveis regionais. A proposta metodológica aplicada, pela primeira vez em dados reais de municípios brasileiros, é desafiadora e merece maiores aprimoramentos. Apesar da melhora nos dados, o método utilizado neste estudo para o tratamento dos dados brutos mostrou um grande impacto nas estimativas finais.SciELO PreprintsSciELO PreprintsSciELO Preprints2020-12-15info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/161110.1590/1980-549720210004.supl.1porhttps://preprints.scielo.org/index.php/scielo/article/view/1611/2547Copyright (c) 2020 Renato Azeredo Teixeira , Lenice Harumi Ishitani , Fátima Marinho , Elzo Pereira Pinto Junior, Srinivasa Vittal Katikireddi , Deborah Carvalho Maltahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessTeixeira , Renato Azeredo Ishitani , Lenice Harumi Marinho , Fátima Junior, Elzo Pereira Pinto Katikireddi , Srinivasa Vittal Malta, Deborah Carvalho reponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-12-15T12:31:04Zoai:ops.preprints.scielo.org:preprint/1611Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-12-15T12:31:04SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases Proposta metodológica para redistribuição de óbitos por causas garbage nas estimativas de mortalidade para Doenças Crônicas Não Transmissíveis |
title |
Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases |
spellingShingle |
Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases Teixeira , Renato Azeredo doenças não transmissíveis qualidade dos dados de mortalidade garbage codes pequenas áreas noncommunicable diseases quality of data mortality garbage codes small areas |
title_short |
Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases |
title_full |
Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases |
title_fullStr |
Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases |
title_full_unstemmed |
Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases |
title_sort |
Methodological proposal for the redistribution of deaths due to garbage codes in mortality estimates for Noncommunicable Chronic Diseases |
author |
Teixeira , Renato Azeredo |
author_facet |
Teixeira , Renato Azeredo Ishitani , Lenice Harumi Marinho , Fátima Junior, Elzo Pereira Pinto Katikireddi , Srinivasa Vittal Malta, Deborah Carvalho |
author_role |
author |
author2 |
Ishitani , Lenice Harumi Marinho , Fátima Junior, Elzo Pereira Pinto Katikireddi , Srinivasa Vittal Malta, Deborah Carvalho |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Teixeira , Renato Azeredo Ishitani , Lenice Harumi Marinho , Fátima Junior, Elzo Pereira Pinto Katikireddi , Srinivasa Vittal Malta, Deborah Carvalho |
dc.subject.por.fl_str_mv |
doenças não transmissíveis qualidade dos dados de mortalidade garbage codes pequenas áreas noncommunicable diseases quality of data mortality garbage codes small areas |
topic |
doenças não transmissíveis qualidade dos dados de mortalidade garbage codes pequenas áreas noncommunicable diseases quality of data mortality garbage codes small areas |
description |
Objective: to propose a method for improving mortality estimates from non-communicable chronic diseases (NCD), including the redistribution of garbage causes in the municipalities of Brazil. Methods: Information Mortality System (SIM) data was used in the three-year periods from 2010 to 2012 and 2015 to 2017, with comparison of age standardized rates before and after correction of NCDs (cardiovascular, chronic respiratory, diabetes and neoplasms). The treatment for data correction included missing data, under-registration and causes of garbage redistribution (CG). The trienniums and Bayesian method were used to estimate mortality rates by improving the fluctuation caused by small numbers at the municipal level. Results: The CG redistribution stage showed greater weight in the corrections, about 40% in 2000 and about 20% from 2007, with stabilization from this year.. Throughout the historical series, the quality of information on causes of death has improved in Brazil, with heterogeneous results being observed among the municipalities. Conclusions: methodological studies that propose the correction and improvement of the SIM are essential for monitoring the mortality rates due to NCDs at regional levels. The methodological proposal applied, for the first time in real data from Brazilian municipalities, is challenging and deserves further improvements. Despite the improvement in the data, the use of rates with raw data is not recommended, as the treatment in the data, the method used in this study for the treatment of raw data showed a great impact on the final estimates. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-15 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/1611 10.1590/1980-549720210004.supl.1 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/1611 |
identifier_str_mv |
10.1590/1980-549720210004.supl.1 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/1611/2547 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047821408403456 |