MORTALITY DUE TO GARBAGE CODES IN BRAZILIAN MUNICIPALITIES: DIFFERENCES BETWEEN DIRECT AND INDIRECT ESTIMATES IN 2015 TO 2017

Detalhes bibliográficos
Autor(a) principal: Teixeira , Renato Azeredo
Data de Publicação: 2020
Outros Autores: Ishitani , Lenice Harumi, França , Elisabeth Barboza, Pinheiro, Pedro Cisalpino, Lobato , Marina Martins, Malta, Deborah Carvalho
Tipo de documento: preprint
Idioma: eng
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/1606
Resumo: Objectives: the present study aims to generate estimates of mortality rates due to garbage codes (GC) for municipalities in Brazil by comparing direct and indirect methods, based on deaths registered in the Mortality Information System (SIM) between 2015 and 2017. Methods: Data from the SIM were used. The analysis was performed in groups of GC, levels 1 and 2, levels 3 and 4 and total GC. Mortality rates were estimated directly and indirectly, Empirical Bayesian Estimators. Results: about 38% of CG were estimated and regional differences in mortality rates were observed, higher in the Northeast and Southeast and lower in the South and Midwest. The Southeast presented similar rates for the two groups of CG analyzed. The smallest differences between direct and indirect estimates were observed in large cities, above 500 thousand. The municipalities in the north of Minas Gerais and the states of Rio de Janeiro, São Paulo and Bahia presented municipalities with high rates at levels 1 and 2. Conclusion: there are differences in the quality of the definition of the underlying causes of death, even with the use of indirect methodology which assists in smoothing rates. The quality of the definition of causes of death is important since they are associated with the access and quality of health services and offer subsidies for health planning.
id SCI-1_b21469ffd09a896059a19ca5d74c87ad
oai_identifier_str oai:ops.preprints.scielo.org:preprint/1606
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling MORTALITY DUE TO GARBAGE CODES IN BRAZILIAN MUNICIPALITIES: DIFFERENCES BETWEEN DIRECT AND INDIRECT ESTIMATES IN 2015 TO 2017MORTALIDADE POR CAUSAS GARBAGE NOS MUNICÍPIOS BRASILEIROS: DIFERENÇAS ENTRE AS ESTIMATIVAS DIRETAS E INDIRETAS EM 2015 A 2017qualidade dos dados de mortalidadecausas mal definidasgarbage codespequenas áreasquality of data mortalityill-defined causes of degarbage codessmall areasObjectives: the present study aims to generate estimates of mortality rates due to garbage codes (GC) for municipalities in Brazil by comparing direct and indirect methods, based on deaths registered in the Mortality Information System (SIM) between 2015 and 2017. Methods: Data from the SIM were used. The analysis was performed in groups of GC, levels 1 and 2, levels 3 and 4 and total GC. Mortality rates were estimated directly and indirectly, Empirical Bayesian Estimators. Results: about 38% of CG were estimated and regional differences in mortality rates were observed, higher in the Northeast and Southeast and lower in the South and Midwest. The Southeast presented similar rates for the two groups of CG analyzed. The smallest differences between direct and indirect estimates were observed in large cities, above 500 thousand. The municipalities in the north of Minas Gerais and the states of Rio de Janeiro, São Paulo and Bahia presented municipalities with high rates at levels 1 and 2. Conclusion: there are differences in the quality of the definition of the underlying causes of death, even with the use of indirect methodology which assists in smoothing rates. The quality of the definition of causes of death is important since they are associated with the access and quality of health services and offer subsidies for health planning.Objetivos: o presente estudo tem como objetivo gerar estimativas das taxas de mortalidade por causas garbage (CG) para os municípios do Brasil fazendo a comparação entre métodos diretos e indiretos, tendo como base os óbitos registrados no SIM entre 2015 e 2017. Métodos: Os dados do Sistema de Informações sobre Mortalidade (SIM) foram utilizados. A análise foi realizada com grupos de GC, níveis 1 e 2, níveis 3 e 4 e total de GC. As taxas de mortalidade foram estimadas de forma direta e indireta, estimadores bayesianos empíricos. Resultados: observou-se cerca de 38% de CG e diferenças regionais nas taxas de mortalidade, maiores no Nordeste e Sudeste e menores no Sul e Centro-Oeste. O Sudeste apresentou taxas semelhantes para os dois grupos de CG analisados. As menores diferenças entre as estimativas diretas e indiretas foram observadas nas grandes cidades, acima de 500 mil. Os municípios do norte de Minas Gerais e estados do Rio de Janeiro, São Paulo e Bahia apresentaram municípios com altas taxas nos níveis 1 e 2. Conclusão: existem diferenças na qualidade da definição das causas básicas de morte, mesmo com o uso de metodologia indireta que auxilia na suavização das taxas. A qualidade da definição das causas de morte é importante, uma vez que se mostram associadas com o acesso e qualidade dos serviços de saúde e oferecem subsídios para o planejamento em saúde.SciELO PreprintsSciELO PreprintsSciELO Preprints2020-12-14info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/160610.1590/1980-549720210003.supl.1enghttps://preprints.scielo.org/index.php/scielo/article/view/1606/2541Copyright (c) 2020 Renato Azeredo Teixeira , Lenice Harumi Ishitani , Elisabeth Barboza França , Pedro Cisalpino Pinheiro, Marina Martins Lobato , Deborah Carvalho Maltahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessTeixeira , Renato Azeredo Ishitani , Lenice Harumi França , Elisabeth Barboza Pinheiro, Pedro Cisalpino Lobato , Marina Martins Malta, Deborah Carvalho reponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-12-14T18:11:39Zoai:ops.preprints.scielo.org:preprint/1606Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-12-14T18:11:39SciELO Preprints - SciELOfalse
dc.title.none.fl_str_mv MORTALITY DUE TO GARBAGE CODES IN BRAZILIAN MUNICIPALITIES: DIFFERENCES BETWEEN DIRECT AND INDIRECT ESTIMATES IN 2015 TO 2017
MORTALIDADE POR CAUSAS GARBAGE NOS MUNICÍPIOS BRASILEIROS: DIFERENÇAS ENTRE AS ESTIMATIVAS DIRETAS E INDIRETAS EM 2015 A 2017
title MORTALITY DUE TO GARBAGE CODES IN BRAZILIAN MUNICIPALITIES: DIFFERENCES BETWEEN DIRECT AND INDIRECT ESTIMATES IN 2015 TO 2017
spellingShingle MORTALITY DUE TO GARBAGE CODES IN BRAZILIAN MUNICIPALITIES: DIFFERENCES BETWEEN DIRECT AND INDIRECT ESTIMATES IN 2015 TO 2017
Teixeira , Renato Azeredo
qualidade dos dados de mortalidade
causas mal definidas
garbage codes
pequenas áreas
quality of data mortality
ill-defined causes of de
garbage codes
small areas
title_short MORTALITY DUE TO GARBAGE CODES IN BRAZILIAN MUNICIPALITIES: DIFFERENCES BETWEEN DIRECT AND INDIRECT ESTIMATES IN 2015 TO 2017
title_full MORTALITY DUE TO GARBAGE CODES IN BRAZILIAN MUNICIPALITIES: DIFFERENCES BETWEEN DIRECT AND INDIRECT ESTIMATES IN 2015 TO 2017
title_fullStr MORTALITY DUE TO GARBAGE CODES IN BRAZILIAN MUNICIPALITIES: DIFFERENCES BETWEEN DIRECT AND INDIRECT ESTIMATES IN 2015 TO 2017
title_full_unstemmed MORTALITY DUE TO GARBAGE CODES IN BRAZILIAN MUNICIPALITIES: DIFFERENCES BETWEEN DIRECT AND INDIRECT ESTIMATES IN 2015 TO 2017
title_sort MORTALITY DUE TO GARBAGE CODES IN BRAZILIAN MUNICIPALITIES: DIFFERENCES BETWEEN DIRECT AND INDIRECT ESTIMATES IN 2015 TO 2017
author Teixeira , Renato Azeredo
author_facet Teixeira , Renato Azeredo
Ishitani , Lenice Harumi
França , Elisabeth Barboza
Pinheiro, Pedro Cisalpino
Lobato , Marina Martins
Malta, Deborah Carvalho
author_role author
author2 Ishitani , Lenice Harumi
França , Elisabeth Barboza
Pinheiro, Pedro Cisalpino
Lobato , Marina Martins
Malta, Deborah Carvalho
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Teixeira , Renato Azeredo
Ishitani , Lenice Harumi
França , Elisabeth Barboza
Pinheiro, Pedro Cisalpino
Lobato , Marina Martins
Malta, Deborah Carvalho
dc.subject.por.fl_str_mv qualidade dos dados de mortalidade
causas mal definidas
garbage codes
pequenas áreas
quality of data mortality
ill-defined causes of de
garbage codes
small areas
topic qualidade dos dados de mortalidade
causas mal definidas
garbage codes
pequenas áreas
quality of data mortality
ill-defined causes of de
garbage codes
small areas
description Objectives: the present study aims to generate estimates of mortality rates due to garbage codes (GC) for municipalities in Brazil by comparing direct and indirect methods, based on deaths registered in the Mortality Information System (SIM) between 2015 and 2017. Methods: Data from the SIM were used. The analysis was performed in groups of GC, levels 1 and 2, levels 3 and 4 and total GC. Mortality rates were estimated directly and indirectly, Empirical Bayesian Estimators. Results: about 38% of CG were estimated and regional differences in mortality rates were observed, higher in the Northeast and Southeast and lower in the South and Midwest. The Southeast presented similar rates for the two groups of CG analyzed. The smallest differences between direct and indirect estimates were observed in large cities, above 500 thousand. The municipalities in the north of Minas Gerais and the states of Rio de Janeiro, São Paulo and Bahia presented municipalities with high rates at levels 1 and 2. Conclusion: there are differences in the quality of the definition of the underlying causes of death, even with the use of indirect methodology which assists in smoothing rates. The quality of the definition of causes of death is important since they are associated with the access and quality of health services and offer subsidies for health planning.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/1606
10.1590/1980-549720210003.supl.1
url https://preprints.scielo.org/index.php/scielo/preprint/view/1606
identifier_str_mv 10.1590/1980-549720210003.supl.1
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/1606/2541
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:SciELO
instacron:SCI
instname_str SciELO
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - SciELO
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047821392674816