Characterizing COVID-19 epidemics dissemination and previsions for Curitiba,Brazil using a modified SIR model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | preprint |
Idioma: | eng |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/1094 |
Resumo: | The epidemic outbreak of the new coronavirus has fastly reached a pandemic status. That has awaken interest from the academy on mathematical models that alow for contagion curves previsions. A SIR model with modied solutions has been presented and numerical solutions of R0 and τ for data corrected including probable non-notied cases has been reached. Previsions have been made to support government decision-makers on strategies to ght the pandemic. Main topics discussed were state-wide inward dissemination and probable second waves of dissemination in large urban areas taking Curitiba-PR, Manaus-Am and the state of Parana as study cases. Also, a correlation between susceptibles urban density and dissemination parameters R0 and τ are shown to be precise do a 10% error margin. That was quite instrumental on previewing second wave parameters. Were considered data available up to may, 8, 2020. |
id |
SCI-1_a70ce74e68e65c8583531ff59be4a6bd |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/1094 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Characterizing COVID-19 epidemics dissemination and previsions for Curitiba,Brazil using a modified SIR modelCaracterização da disseminação da epidemia de COVID-19 e previsões para Curitiba-BR utilizando modelo SIR modificadoSARS-COV2SIRR0tempo de recuperaçãodensidade de susceptíveisCuritibaParanáSIRSARS-CoV-2R0CuritibaParanásusceptible densitycharacterizationprevisionsThe epidemic outbreak of the new coronavirus has fastly reached a pandemic status. That has awaken interest from the academy on mathematical models that alow for contagion curves previsions. A SIR model with modied solutions has been presented and numerical solutions of R0 and τ for data corrected including probable non-notied cases has been reached. Previsions have been made to support government decision-makers on strategies to ght the pandemic. Main topics discussed were state-wide inward dissemination and probable second waves of dissemination in large urban areas taking Curitiba-PR, Manaus-Am and the state of Parana as study cases. Also, a correlation between susceptibles urban density and dissemination parameters R0 and τ are shown to be precise do a 10% error margin. That was quite instrumental on previewing second wave parameters. Were considered data available up to may, 8, 2020.O surto epidêmico do novo coronavírus, que rapidamente alcançou o status de pandemia, despertou o interesse por modelos matemáticos que permitam realizar previsões de desenvolvimento das curvas de contágio. Um modelo SIR com soluções modificadas foi apresentado e soluções numéricas dos parâmetros de disseminação R0 e tempo de recuperação baseadas em dados corrigidos com prováveis não-notificados foram alcançadas. Previsões foram feitas para amparar as autoridades públicas na adoção de estratégias para o combate a pandemia quanto a interiorização da disseminação e análise de prováveis segundas ondas em centro urbanos tomando Curitiba-PR, Manaus-Am e o estado do Paraná como casos de estudo. Uma correlação entre densidade urbana de susceptíveis e os parâmetros de disseminação R0 e tempo de recuperação foram levantadas com margem de erro de 10% o que permitiu ótima previsão dos parâmetros de segundas ondas. Foram considerandos os dados disponíveis para o Brasil até 08 de maio de 2020.SciELO PreprintsSciELO PreprintsSciELO Preprints2020-08-14info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/109410.1590/SciELOPreprints.1094enghttps://preprints.scielo.org/index.php/scielo/article/view/1094/1610Copyright (c) 2020 Lecio Montanheiro, Cesar Dartorahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMontanheiro, LecioDartora, Cesarreponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-08-12T20:30:41Zoai:ops.preprints.scielo.org:preprint/1094Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-08-12T20:30:41SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Characterizing COVID-19 epidemics dissemination and previsions for Curitiba,Brazil using a modified SIR model Caracterização da disseminação da epidemia de COVID-19 e previsões para Curitiba-BR utilizando modelo SIR modificado |
title |
Characterizing COVID-19 epidemics dissemination and previsions for Curitiba,Brazil using a modified SIR model |
spellingShingle |
Characterizing COVID-19 epidemics dissemination and previsions for Curitiba,Brazil using a modified SIR model Montanheiro, Lecio SARS-COV2 SIR R0 tempo de recuperação densidade de susceptíveis Curitiba Paraná SIR SARS-CoV-2 R0 Curitiba Paraná susceptible density characterization previsions |
title_short |
Characterizing COVID-19 epidemics dissemination and previsions for Curitiba,Brazil using a modified SIR model |
title_full |
Characterizing COVID-19 epidemics dissemination and previsions for Curitiba,Brazil using a modified SIR model |
title_fullStr |
Characterizing COVID-19 epidemics dissemination and previsions for Curitiba,Brazil using a modified SIR model |
title_full_unstemmed |
Characterizing COVID-19 epidemics dissemination and previsions for Curitiba,Brazil using a modified SIR model |
title_sort |
Characterizing COVID-19 epidemics dissemination and previsions for Curitiba,Brazil using a modified SIR model |
author |
Montanheiro, Lecio |
author_facet |
Montanheiro, Lecio Dartora, Cesar |
author_role |
author |
author2 |
Dartora, Cesar |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Montanheiro, Lecio Dartora, Cesar |
dc.subject.por.fl_str_mv |
SARS-COV2 SIR R0 tempo de recuperação densidade de susceptíveis Curitiba Paraná SIR SARS-CoV-2 R0 Curitiba Paraná susceptible density characterization previsions |
topic |
SARS-COV2 SIR R0 tempo de recuperação densidade de susceptíveis Curitiba Paraná SIR SARS-CoV-2 R0 Curitiba Paraná susceptible density characterization previsions |
description |
The epidemic outbreak of the new coronavirus has fastly reached a pandemic status. That has awaken interest from the academy on mathematical models that alow for contagion curves previsions. A SIR model with modied solutions has been presented and numerical solutions of R0 and τ for data corrected including probable non-notied cases has been reached. Previsions have been made to support government decision-makers on strategies to ght the pandemic. Main topics discussed were state-wide inward dissemination and probable second waves of dissemination in large urban areas taking Curitiba-PR, Manaus-Am and the state of Parana as study cases. Also, a correlation between susceptibles urban density and dissemination parameters R0 and τ are shown to be precise do a 10% error margin. That was quite instrumental on previewing second wave parameters. Were considered data available up to may, 8, 2020. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-14 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/1094 10.1590/SciELOPreprints.1094 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/1094 |
identifier_str_mv |
10.1590/SciELOPreprints.1094 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/1094/1610 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Lecio Montanheiro, Cesar Dartora https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Lecio Montanheiro, Cesar Dartora https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047819912085504 |