Forecast UTI: application for predicting Intensive Care Units beds in the context of the covid-19 pandemic

Detalhes bibliográficos
Autor(a) principal: Neto, Luiz Leduíno de Salles
Data de Publicação: 2020
Outros Autores: Martins, Camila Bertini, Chaves, Antônio Augusto, Konstantyner, Thais Cláudia Roma de Oliveira, Yanasse, Horácio Hideki, Campos, Claudia Barbosa Ladeira de, Bellini, Ana Júlia de Oliveira, Butkeraites, Renan Brito, Correia, Leonardo, Magro, Igor Luciano, Soares, Fernando dos Santos
Tipo de documento: preprint
Idioma: por
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/1034
Resumo: In view of the need to manage and forecast the number of beds in the Intensive Care Units for critically ill patients in Covid-19, the Forecast UTI was developed: an open access application that allows the monitoring of hospital indicators based on historical data from the service health and the temporal dynamics of the epidemic. It is also possible to make short-term forecasts of the number of beds occupied daily by the disease and to establish possible care scenarios. This article presents the functions, mode of access and examples of use of Forecast UTI, a computational tool capable of assisting managers of public and private hospitals in the Unified Health System, since they support decision-making quickly, strategically and efficiently.
id SCI-1_fa5d9e791c5fa35ac53dc3be8bf68884
oai_identifier_str oai:ops.preprints.scielo.org:preprint/1034
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Forecast UTI: application for predicting Intensive Care Units beds in the context of the covid-19 pandemicForecast UTI: aplicación para pronosticar lechos de Unidades de Cuidados Intensivos en el contexto de la pandemia de covid-19Forecast UTI: aplicativo para previsão de leitos de unidades de terapia intensiva no contexto da pandemia de covid-19Infecções por CoronavírusVigilância em Saúde PúblicaPrevisõesSistema Único de SaúdeUnidades de Terapia IntensivaCoronavirus InfectionsPublic Health SurveillanceForecastingUnified Health SystemIntensive Care UnitsIn view of the need to manage and forecast the number of beds in the Intensive Care Units for critically ill patients in Covid-19, the Forecast UTI was developed: an open access application that allows the monitoring of hospital indicators based on historical data from the service health and the temporal dynamics of the epidemic. It is also possible to make short-term forecasts of the number of beds occupied daily by the disease and to establish possible care scenarios. This article presents the functions, mode of access and examples of use of Forecast UTI, a computational tool capable of assisting managers of public and private hospitals in the Unified Health System, since they support decision-making quickly, strategically and efficiently.Frente à necessidade de gerenciamento e previsão do número de leitos de unidades de terapia intensiva (UTI) para pacientes graves de covid-19, foi desenvolvido o Forecast UTI, um aplicativo de livre acesso e que permite o monitoramento de indicadores hospitalares com base em dados históricos do serviço de saúde e na dinâmica temporal dessa epidemia por coronavírus. O Forecast UTI também possibilita realizar previsões de curto prazo sobre número de leitos ocupados pela doença diariamente, e estabelecer possíveis cenários de atendimento. Este artigo apresenta as funções, modo de acesso e exemplos de uso do Forecast UTI, uma ferramenta computacional destinada a auxiliar gestores de hospitais da rede pública e privada do Sistema Único de Saúde no subsídio à tomada de decisão, de forma rápida, estratégica e eficiente. SciELO PreprintsSciELO PreprintsSciELO Preprints2020-08-03info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/103410.1590/SciELOPreprints.1034porhttps://preprints.scielo.org/index.php/scielo/article/view/1034/1481Copyright (c) 2020 Luiz Leduíno de Salles Neto, Camila Bertini Martins, Antônio Augusto Chaves, Thais Cláudia Roma de Oliveira Konstantyner, Horácio Hideki Yanasse, Claudia Barbosa Ladeira de Campos, Ana Júlia de Oliveira Bellini, Renan Brito Butkeraites, Leonardo Correia, Igor Luciano Magro, Fernando dos Santos Soareshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessNeto, Luiz Leduíno de Salles Martins, Camila Bertini Chaves, Antônio Augusto Konstantyner, Thais Cláudia Roma de Oliveira Yanasse, Horácio Hideki Campos, Claudia Barbosa Ladeira de Bellini, Ana Júlia de Oliveira Butkeraites, Renan Brito Correia, Leonardo Magro, Igor Luciano Soares, Fernando dos Santos reponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-07-29T22:27:35Zoai:ops.preprints.scielo.org:preprint/1034Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-07-29T22:27:35SciELO Preprints - SciELOfalse
dc.title.none.fl_str_mv Forecast UTI: application for predicting Intensive Care Units beds in the context of the covid-19 pandemic
Forecast UTI: aplicación para pronosticar lechos de Unidades de Cuidados Intensivos en el contexto de la pandemia de covid-19
Forecast UTI: aplicativo para previsão de leitos de unidades de terapia intensiva no contexto da pandemia de covid-19
title Forecast UTI: application for predicting Intensive Care Units beds in the context of the covid-19 pandemic
spellingShingle Forecast UTI: application for predicting Intensive Care Units beds in the context of the covid-19 pandemic
Neto, Luiz Leduíno de Salles
Infecções por Coronavírus
Vigilância em Saúde Pública
Previsões
Sistema Único de Saúde
Unidades de Terapia Intensiva
Coronavirus Infections
Public Health Surveillance
Forecasting
Unified Health System
Intensive Care Units
title_short Forecast UTI: application for predicting Intensive Care Units beds in the context of the covid-19 pandemic
title_full Forecast UTI: application for predicting Intensive Care Units beds in the context of the covid-19 pandemic
title_fullStr Forecast UTI: application for predicting Intensive Care Units beds in the context of the covid-19 pandemic
title_full_unstemmed Forecast UTI: application for predicting Intensive Care Units beds in the context of the covid-19 pandemic
title_sort Forecast UTI: application for predicting Intensive Care Units beds in the context of the covid-19 pandemic
author Neto, Luiz Leduíno de Salles
author_facet Neto, Luiz Leduíno de Salles
Martins, Camila Bertini
Chaves, Antônio Augusto
Konstantyner, Thais Cláudia Roma de Oliveira
Yanasse, Horácio Hideki
Campos, Claudia Barbosa Ladeira de
Bellini, Ana Júlia de Oliveira
Butkeraites, Renan Brito
Correia, Leonardo
Magro, Igor Luciano
Soares, Fernando dos Santos
author_role author
author2 Martins, Camila Bertini
Chaves, Antônio Augusto
Konstantyner, Thais Cláudia Roma de Oliveira
Yanasse, Horácio Hideki
Campos, Claudia Barbosa Ladeira de
Bellini, Ana Júlia de Oliveira
Butkeraites, Renan Brito
Correia, Leonardo
Magro, Igor Luciano
Soares, Fernando dos Santos
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Neto, Luiz Leduíno de Salles
Martins, Camila Bertini
Chaves, Antônio Augusto
Konstantyner, Thais Cláudia Roma de Oliveira
Yanasse, Horácio Hideki
Campos, Claudia Barbosa Ladeira de
Bellini, Ana Júlia de Oliveira
Butkeraites, Renan Brito
Correia, Leonardo
Magro, Igor Luciano
Soares, Fernando dos Santos
dc.subject.por.fl_str_mv Infecções por Coronavírus
Vigilância em Saúde Pública
Previsões
Sistema Único de Saúde
Unidades de Terapia Intensiva
Coronavirus Infections
Public Health Surveillance
Forecasting
Unified Health System
Intensive Care Units
topic Infecções por Coronavírus
Vigilância em Saúde Pública
Previsões
Sistema Único de Saúde
Unidades de Terapia Intensiva
Coronavirus Infections
Public Health Surveillance
Forecasting
Unified Health System
Intensive Care Units
description In view of the need to manage and forecast the number of beds in the Intensive Care Units for critically ill patients in Covid-19, the Forecast UTI was developed: an open access application that allows the monitoring of hospital indicators based on historical data from the service health and the temporal dynamics of the epidemic. It is also possible to make short-term forecasts of the number of beds occupied daily by the disease and to establish possible care scenarios. This article presents the functions, mode of access and examples of use of Forecast UTI, a computational tool capable of assisting managers of public and private hospitals in the Unified Health System, since they support decision-making quickly, strategically and efficiently.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-03
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/1034
10.1590/SciELOPreprints.1034
url https://preprints.scielo.org/index.php/scielo/preprint/view/1034
identifier_str_mv 10.1590/SciELOPreprints.1034
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/1034/1481
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:SciELO
instacron:SCI
instname_str SciELO
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - SciELO
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047819492655104