Método de detecção de padrões na dinâmica dos movimentos complexos na deglutição de um indivíduo.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório da Produção Científica e Intelectual do SENAI CIMATEC |
Texto Completo: | http://repositoriosenaiba.fieb.org.br/handle/fieb/744 |
Resumo: | A visão humana e capaz de identificar diversos tipos de padrões ou modelos de movimentos. Podemos assim, distinguir os mais complexos padrões e diferenciar sem muita dificuldade os mesmos. Por exemplo, visualmente somos capazes de identificar o movimento do subir e descer da glote na deglutição, mesmo que esta esteja sob a pele. Este motivo dificulta a identificação de qual parte devemos analisar, se é o movimento da pele ou da glote. Estas a ações são facilmente identificadas pelo cérebro humano, mas exigem um complexo processamento quando feitas através da modelagem computacional. O objetivo desta dissertação e propor um método de detec ção de padrões na dinâmica dos deslocamentos dos pixels, através da distribuição das velocidades aparentes dos padrões de brilho de uma filmagem da deglutição de um indivíduo, em vídeos capturados através de uma câmera filmadora digital e processar em um computador portátil, assim como propor medidas e representações simplificadas deste movimento. Como ferramenta de aplicação do modelo, foi desenvolvido um software, para a identificação destes movimentos e a sua conversão em séries temporais. Para validação deste modelo, foram utilizados o método de análise de correlação DFA que apresenta uma análise de uma série temporal sem tendência a longo alcance, o método DCCA que possibilita efetuar uma correlação cruzada sem tendência entre séries, que por esta característica possibilita analisar se as series são ou não persistentes e por ultimo o índice de correlação cruzada DCCA que quantifica sua correlação cruzada em perfeitamente correlacional, ante relacional ou aleatório, este último foi proposto por (ZEBENDE, 2011), para identificar se as séries possuam alguma similaridade ou não. Foi utilizado uma abordagem amostral longitudinal com o estudo de pacientes portadores de hemiplegia que são assistidos pelos profissionais do CEPRED - Centro Estadual de Prevenção e Reabilitação de Pessoas com deficiências, acompanhando-o desde o ínicio de seu tratamento e registrando todas as suas respostas ao tratamento realizado pelo fonoaudiólogo a cada consulta. O projeto e composto por duas fases: a primeira na filmagem durante o tratamento do paciente, e a segunda na análise dos dados. Este projeto tem o propósito de ser uma ferramenta de auxílio no diagnóstico, que resulta em um aplicativo denominado Movimento CV, tal aplicativo permite a análise de todos os métodos juntamente com a captura das imagens. O intuito é que o modelo auxilie os profissionais da área de saúde a diferenciar os movimentos e que para isso seja utilizado o método proposto para detecção de movimentos e seguida conversão destes em séries temporais e logo em seguida submetidos as análises de correlação cruzada para que assim seja capaz de distinguir diferenças nas séries, identificando se os movimentos possuem ou não diferenças. |
id |
SENAI-1_7873e8f3db228616ac523bdf3c3b5d75 |
---|---|
oai_identifier_str |
oai:repositoriosenaiba.fieb.org.br:fieb/744 |
network_acronym_str |
SENAI-1 |
network_name_str |
Repositório da Produção Científica e Intelectual do SENAI CIMATEC |
repository_id_str |
|
spelling |
Castro, Arleys Pereira Nunes deZebende, Gilney FigueiraMiranda, José Garcia VivasCruz, Juan Alberto LeyvaPenna, Thadeu Josino PereiraGuimarães, Rodney Nascimento2016-09-22T13:16:03Z2012-03-30http://repositoriosenaiba.fieb.org.br/handle/fieb/744A visão humana e capaz de identificar diversos tipos de padrões ou modelos de movimentos. Podemos assim, distinguir os mais complexos padrões e diferenciar sem muita dificuldade os mesmos. Por exemplo, visualmente somos capazes de identificar o movimento do subir e descer da glote na deglutição, mesmo que esta esteja sob a pele. Este motivo dificulta a identificação de qual parte devemos analisar, se é o movimento da pele ou da glote. Estas a ações são facilmente identificadas pelo cérebro humano, mas exigem um complexo processamento quando feitas através da modelagem computacional. O objetivo desta dissertação e propor um método de detec ção de padrões na dinâmica dos deslocamentos dos pixels, através da distribuição das velocidades aparentes dos padrões de brilho de uma filmagem da deglutição de um indivíduo, em vídeos capturados através de uma câmera filmadora digital e processar em um computador portátil, assim como propor medidas e representações simplificadas deste movimento. Como ferramenta de aplicação do modelo, foi desenvolvido um software, para a identificação destes movimentos e a sua conversão em séries temporais. Para validação deste modelo, foram utilizados o método de análise de correlação DFA que apresenta uma análise de uma série temporal sem tendência a longo alcance, o método DCCA que possibilita efetuar uma correlação cruzada sem tendência entre séries, que por esta característica possibilita analisar se as series são ou não persistentes e por ultimo o índice de correlação cruzada DCCA que quantifica sua correlação cruzada em perfeitamente correlacional, ante relacional ou aleatório, este último foi proposto por (ZEBENDE, 2011), para identificar se as séries possuam alguma similaridade ou não. Foi utilizado uma abordagem amostral longitudinal com o estudo de pacientes portadores de hemiplegia que são assistidos pelos profissionais do CEPRED - Centro Estadual de Prevenção e Reabilitação de Pessoas com deficiências, acompanhando-o desde o ínicio de seu tratamento e registrando todas as suas respostas ao tratamento realizado pelo fonoaudiólogo a cada consulta. O projeto e composto por duas fases: a primeira na filmagem durante o tratamento do paciente, e a segunda na análise dos dados. Este projeto tem o propósito de ser uma ferramenta de auxílio no diagnóstico, que resulta em um aplicativo denominado Movimento CV, tal aplicativo permite a análise de todos os métodos juntamente com a captura das imagens. O intuito é que o modelo auxilie os profissionais da área de saúde a diferenciar os movimentos e que para isso seja utilizado o método proposto para detecção de movimentos e seguida conversão destes em séries temporais e logo em seguida submetidos as análises de correlação cruzada para que assim seja capaz de distinguir diferenças nas séries, identificando se os movimentos possuem ou não diferenças.Faculdade de Tecnologia SENAI CIMATECFaculdade de Tecnologia SENAI CIMATECModelagem Computacional e Tecnologia IndustrialSENAI CIMATECbrasilSérie temporalMétodo DFAHemiplegiaDCCAMétodo de detecção de padrões na dinâmica dos movimentos complexos na deglutição de um indivíduo.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisaberto2016-09-23T13:16:03Zinfo:eu-repo/semantics/openAccessporreponame:Repositório da Produção Científica e Intelectual do SENAI CIMATECinstname:Serviço Nacional de Aprendizagem Industrial Campus Integrado de Manufatura e Tecnologia (SENAI CIMATEC)instacron:SENAI CIMATECORIGINALDissertação Arleys Pereira Nunes de Castro.pdfDissertação Arleys Pereira Nunes de Castro.pdfapplication/pdf4358189http://repositoriosenaiba.fieb.org.br/bitstream/fieb/744/1/Disserta%c3%a7%c3%a3o%20Arleys%20Pereira%20Nunes%20de%20Castro.pdfef142072afd64874a40ec1ab396149b5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositoriosenaiba.fieb.org.br/bitstream/fieb/744/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52fieb/7442016-09-22 10:16:03.533oai:repositoriosenaiba.fieb.org.br:fieb/744Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de Publicaçõeshttp://repositoriosenaiba.fieb.org.br/oaiopendoar:2016-09-22T13:16:03Repositório da Produção Científica e Intelectual do SENAI CIMATEC - Serviço Nacional de Aprendizagem Industrial Campus Integrado de Manufatura e Tecnologia (SENAI CIMATEC)false |
dc.title.pt_BR.fl_str_mv |
Método de detecção de padrões na dinâmica dos movimentos complexos na deglutição de um indivíduo. |
title |
Método de detecção de padrões na dinâmica dos movimentos complexos na deglutição de um indivíduo. |
spellingShingle |
Método de detecção de padrões na dinâmica dos movimentos complexos na deglutição de um indivíduo. Castro, Arleys Pereira Nunes de Série temporal Método DFA Hemiplegia DCCA |
title_short |
Método de detecção de padrões na dinâmica dos movimentos complexos na deglutição de um indivíduo. |
title_full |
Método de detecção de padrões na dinâmica dos movimentos complexos na deglutição de um indivíduo. |
title_fullStr |
Método de detecção de padrões na dinâmica dos movimentos complexos na deglutição de um indivíduo. |
title_full_unstemmed |
Método de detecção de padrões na dinâmica dos movimentos complexos na deglutição de um indivíduo. |
title_sort |
Método de detecção de padrões na dinâmica dos movimentos complexos na deglutição de um indivíduo. |
author |
Castro, Arleys Pereira Nunes de |
author_facet |
Castro, Arleys Pereira Nunes de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Castro, Arleys Pereira Nunes de |
dc.contributor.advisor1.fl_str_mv |
Zebende, Gilney Figueira |
dc.contributor.advisor-co1.fl_str_mv |
Miranda, José Garcia Vivas |
dc.contributor.referee1.fl_str_mv |
Cruz, Juan Alberto Leyva Penna, Thadeu Josino Pereira Guimarães, Rodney Nascimento |
contributor_str_mv |
Zebende, Gilney Figueira Miranda, José Garcia Vivas Cruz, Juan Alberto Leyva Penna, Thadeu Josino Pereira Guimarães, Rodney Nascimento |
dc.subject.por.fl_str_mv |
Série temporal Método DFA Hemiplegia DCCA |
topic |
Série temporal Método DFA Hemiplegia DCCA |
description |
A visão humana e capaz de identificar diversos tipos de padrões ou modelos de movimentos. Podemos assim, distinguir os mais complexos padrões e diferenciar sem muita dificuldade os mesmos. Por exemplo, visualmente somos capazes de identificar o movimento do subir e descer da glote na deglutição, mesmo que esta esteja sob a pele. Este motivo dificulta a identificação de qual parte devemos analisar, se é o movimento da pele ou da glote. Estas a ações são facilmente identificadas pelo cérebro humano, mas exigem um complexo processamento quando feitas através da modelagem computacional. O objetivo desta dissertação e propor um método de detec ção de padrões na dinâmica dos deslocamentos dos pixels, através da distribuição das velocidades aparentes dos padrões de brilho de uma filmagem da deglutição de um indivíduo, em vídeos capturados através de uma câmera filmadora digital e processar em um computador portátil, assim como propor medidas e representações simplificadas deste movimento. Como ferramenta de aplicação do modelo, foi desenvolvido um software, para a identificação destes movimentos e a sua conversão em séries temporais. Para validação deste modelo, foram utilizados o método de análise de correlação DFA que apresenta uma análise de uma série temporal sem tendência a longo alcance, o método DCCA que possibilita efetuar uma correlação cruzada sem tendência entre séries, que por esta característica possibilita analisar se as series são ou não persistentes e por ultimo o índice de correlação cruzada DCCA que quantifica sua correlação cruzada em perfeitamente correlacional, ante relacional ou aleatório, este último foi proposto por (ZEBENDE, 2011), para identificar se as séries possuam alguma similaridade ou não. Foi utilizado uma abordagem amostral longitudinal com o estudo de pacientes portadores de hemiplegia que são assistidos pelos profissionais do CEPRED - Centro Estadual de Prevenção e Reabilitação de Pessoas com deficiências, acompanhando-o desde o ínicio de seu tratamento e registrando todas as suas respostas ao tratamento realizado pelo fonoaudiólogo a cada consulta. O projeto e composto por duas fases: a primeira na filmagem durante o tratamento do paciente, e a segunda na análise dos dados. Este projeto tem o propósito de ser uma ferramenta de auxílio no diagnóstico, que resulta em um aplicativo denominado Movimento CV, tal aplicativo permite a análise de todos os métodos juntamente com a captura das imagens. O intuito é que o modelo auxilie os profissionais da área de saúde a diferenciar os movimentos e que para isso seja utilizado o método proposto para detecção de movimentos e seguida conversão destes em séries temporais e logo em seguida submetidos as análises de correlação cruzada para que assim seja capaz de distinguir diferenças nas séries, identificando se os movimentos possuem ou não diferenças. |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012-03-30 |
dc.date.accessioned.fl_str_mv |
2016-09-22T13:16:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositoriosenaiba.fieb.org.br/handle/fieb/744 |
url |
http://repositoriosenaiba.fieb.org.br/handle/fieb/744 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Faculdade de Tecnologia SENAI CIMATEC Faculdade de Tecnologia SENAI CIMATEC |
dc.publisher.program.fl_str_mv |
Modelagem Computacional e Tecnologia Industrial |
dc.publisher.initials.fl_str_mv |
SENAI CIMATEC |
dc.publisher.country.fl_str_mv |
brasil |
publisher.none.fl_str_mv |
Faculdade de Tecnologia SENAI CIMATEC Faculdade de Tecnologia SENAI CIMATEC |
dc.source.none.fl_str_mv |
reponame:Repositório da Produção Científica e Intelectual do SENAI CIMATEC instname:Serviço Nacional de Aprendizagem Industrial Campus Integrado de Manufatura e Tecnologia (SENAI CIMATEC) instacron:SENAI CIMATEC |
instname_str |
Serviço Nacional de Aprendizagem Industrial Campus Integrado de Manufatura e Tecnologia (SENAI CIMATEC) |
instacron_str |
SENAI CIMATEC |
institution |
SENAI CIMATEC |
reponame_str |
Repositório da Produção Científica e Intelectual do SENAI CIMATEC |
collection |
Repositório da Produção Científica e Intelectual do SENAI CIMATEC |
bitstream.url.fl_str_mv |
http://repositoriosenaiba.fieb.org.br/bitstream/fieb/744/1/Disserta%c3%a7%c3%a3o%20Arleys%20Pereira%20Nunes%20de%20Castro.pdf http://repositoriosenaiba.fieb.org.br/bitstream/fieb/744/2/license.txt |
bitstream.checksum.fl_str_mv |
ef142072afd64874a40ec1ab396149b5 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório da Produção Científica e Intelectual do SENAI CIMATEC - Serviço Nacional de Aprendizagem Industrial Campus Integrado de Manufatura e Tecnologia (SENAI CIMATEC) |
repository.mail.fl_str_mv |
|
_version_ |
1813184712979513344 |