ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILD
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Árvore (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622021000100212 |
Resumo: | ABSTRACT The objective of this study is to evaluate the fit of Artificial Neural Networks (ANN) for height estimation and evaluation of the effects of consortium in a mixed-species plantation of Eucalyptus globulus (E) and Acacia mearnsii (A). The experiment was installed in 2005, on two farms in the municipality of Piratini - RS, where was planted the species Eucalyptus globulus (E) and Acacia mearnsii (A), in monoculture and mixed in simple lines (50%E:50%A - SL), and double lines (50%E:50%A - DL). The training and evaluation of the networks were made in R-project with the package neuralnet. All ANNs, from the simplest to the most complex, showed high values for Rŷy and low for Syx, BIAS and RMSE, with superior results in ANN 3, 4, and 6, which demonstrates that the information of DBHmin, DBHmean, and DBHmax were important stand attributes. Furthermore, the ANNs were able to capture the different growth patterns shown by the species in the different forms of consortiums, therefore is indicated for the height estimation in monocultures and mixed plantations of Eucalyptus globulus and Acacia mearnsii, and only one ANN would be necessary to represent the entire population. |
id |
SIF-1_0e63f1202ede2491a6980e485681b4b1 |
---|---|
oai_identifier_str |
oai:scielo:S0100-67622021000100212 |
network_acronym_str |
SIF-1 |
network_name_str |
Revista Árvore (Online) |
repository_id_str |
|
spelling |
ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILDArtificial IntelligenceHypsometric RelationshipConsortiumABSTRACT The objective of this study is to evaluate the fit of Artificial Neural Networks (ANN) for height estimation and evaluation of the effects of consortium in a mixed-species plantation of Eucalyptus globulus (E) and Acacia mearnsii (A). The experiment was installed in 2005, on two farms in the municipality of Piratini - RS, where was planted the species Eucalyptus globulus (E) and Acacia mearnsii (A), in monoculture and mixed in simple lines (50%E:50%A - SL), and double lines (50%E:50%A - DL). The training and evaluation of the networks were made in R-project with the package neuralnet. All ANNs, from the simplest to the most complex, showed high values for Rŷy and low for Syx, BIAS and RMSE, with superior results in ANN 3, 4, and 6, which demonstrates that the information of DBHmin, DBHmean, and DBHmax were important stand attributes. Furthermore, the ANNs were able to capture the different growth patterns shown by the species in the different forms of consortiums, therefore is indicated for the height estimation in monocultures and mixed plantations of Eucalyptus globulus and Acacia mearnsii, and only one ANN would be necessary to represent the entire population.Sociedade de Investigações Florestais2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622021000100212Revista Árvore v.45 2021reponame:Revista Árvore (Online)instname:Universidade Federal de Viçosa (UFV)instacron:SIF10.1590/1806-908820210000012info:eu-repo/semantics/openAccessSoares,Gustavo MartinsSilva,Luciana DuqueHiga,Antonio RioyeiSimon,Augusto ArlindoJosé,Jackson Freitas Brilhante de Sãoeng2021-06-30T00:00:00Zoai:scielo:S0100-67622021000100212Revistahttp://www.scielo.br/revistas/rarv/iaboutj.htmPUBhttps://old.scielo.br/oai/scielo-oai.php||r.arvore@ufv.br1806-90880100-6762opendoar:2021-06-30T00:00Revista Árvore (Online) - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILD |
title |
ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILD |
spellingShingle |
ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILD Soares,Gustavo Martins Artificial Intelligence Hypsometric Relationship Consortium |
title_short |
ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILD |
title_full |
ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILD |
title_fullStr |
ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILD |
title_full_unstemmed |
ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILD |
title_sort |
ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILD |
author |
Soares,Gustavo Martins |
author_facet |
Soares,Gustavo Martins Silva,Luciana Duque Higa,Antonio Rioyei Simon,Augusto Arlindo José,Jackson Freitas Brilhante de São |
author_role |
author |
author2 |
Silva,Luciana Duque Higa,Antonio Rioyei Simon,Augusto Arlindo José,Jackson Freitas Brilhante de São |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Soares,Gustavo Martins Silva,Luciana Duque Higa,Antonio Rioyei Simon,Augusto Arlindo José,Jackson Freitas Brilhante de São |
dc.subject.por.fl_str_mv |
Artificial Intelligence Hypsometric Relationship Consortium |
topic |
Artificial Intelligence Hypsometric Relationship Consortium |
description |
ABSTRACT The objective of this study is to evaluate the fit of Artificial Neural Networks (ANN) for height estimation and evaluation of the effects of consortium in a mixed-species plantation of Eucalyptus globulus (E) and Acacia mearnsii (A). The experiment was installed in 2005, on two farms in the municipality of Piratini - RS, where was planted the species Eucalyptus globulus (E) and Acacia mearnsii (A), in monoculture and mixed in simple lines (50%E:50%A - SL), and double lines (50%E:50%A - DL). The training and evaluation of the networks were made in R-project with the package neuralnet. All ANNs, from the simplest to the most complex, showed high values for Rŷy and low for Syx, BIAS and RMSE, with superior results in ANN 3, 4, and 6, which demonstrates that the information of DBHmin, DBHmean, and DBHmax were important stand attributes. Furthermore, the ANNs were able to capture the different growth patterns shown by the species in the different forms of consortiums, therefore is indicated for the height estimation in monocultures and mixed plantations of Eucalyptus globulus and Acacia mearnsii, and only one ANN would be necessary to represent the entire population. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622021000100212 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622021000100212 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1806-908820210000012 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade de Investigações Florestais |
publisher.none.fl_str_mv |
Sociedade de Investigações Florestais |
dc.source.none.fl_str_mv |
Revista Árvore v.45 2021 reponame:Revista Árvore (Online) instname:Universidade Federal de Viçosa (UFV) instacron:SIF |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
SIF |
institution |
SIF |
reponame_str |
Revista Árvore (Online) |
collection |
Revista Árvore (Online) |
repository.name.fl_str_mv |
Revista Árvore (Online) - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
||r.arvore@ufv.br |
_version_ |
1750318003514245120 |