ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Árvore (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622017000300213 |
Resumo: | ABSTRACT The aim of this study was to evaluate the method of neuroevolution of augmenting topologies (NEAT) to adjust the weights and the topology of artificial neural networks (ANNs) in the estimation of tree height in a clonal population of eucalyptus, and compare with estimates obtained by a hypsometric regression model. To estimate the total tree height (Ht), the RNAs and the regression model, we used as variables a diameter of 1.3 m height (dbh) and the dominant height (Hd). The RNAs were adjusted and applied to the computer system NeuroForest, varying the size of the initial population (the genetic algorithm parameter) and the density of initial connections. Estimates of the total height of the trees obtained with the use of RNA and the regression model were evaluated based on the correlation coefficient, the percentage of errors scatter plot, the percentage frequency histogram of percentage errors, and the root mean square error (root mean square error - RMSE). Various settings which resulted in superior statistics to the hypsometric regression model were found. Connections had the highest correlation and the lowest RMSE% with a population size value of 300 and an initial density of 0.1 RNA. The NEAT methodology proved effective in estimating the height of trees in clonal population of eucalyptus. |
id |
SIF-1_6f9ff1dbb1235a68088212f0d748d2e0 |
---|---|
oai_identifier_str |
oai:scielo:S0100-67622017000300213 |
network_acronym_str |
SIF-1 |
network_name_str |
Revista Árvore (Online) |
repository_id_str |
|
spelling |
ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)Hypsometric regressionForest measurementArtificial neural networksABSTRACT The aim of this study was to evaluate the method of neuroevolution of augmenting topologies (NEAT) to adjust the weights and the topology of artificial neural networks (ANNs) in the estimation of tree height in a clonal population of eucalyptus, and compare with estimates obtained by a hypsometric regression model. To estimate the total tree height (Ht), the RNAs and the regression model, we used as variables a diameter of 1.3 m height (dbh) and the dominant height (Hd). The RNAs were adjusted and applied to the computer system NeuroForest, varying the size of the initial population (the genetic algorithm parameter) and the density of initial connections. Estimates of the total height of the trees obtained with the use of RNA and the regression model were evaluated based on the correlation coefficient, the percentage of errors scatter plot, the percentage frequency histogram of percentage errors, and the root mean square error (root mean square error - RMSE). Various settings which resulted in superior statistics to the hypsometric regression model were found. Connections had the highest correlation and the lowest RMSE% with a population size value of 300 and an initial density of 0.1 RNA. The NEAT methodology proved effective in estimating the height of trees in clonal population of eucalyptus.Sociedade de Investigações Florestais2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622017000300213Revista Árvore v.41 n.3 2017reponame:Revista Árvore (Online)instname:Universidade Federal de Viçosa (UFV)instacron:SIF10.1590/1806-90882017000300014info:eu-repo/semantics/openAccessBinoti,Daniel Henrique BredaDuarte,Paulo JunioSilva,Mayra Luiza Marques daSilva,Gilson Fernandes daLeite,Helio GarciaMendonça,Adriano Ribeiro deAndrade,Valdir Carlos Lima DeVega,Andreina Epifanía Dávilaeng2018-02-19T00:00:00Zoai:scielo:S0100-67622017000300213Revistahttp://www.scielo.br/revistas/rarv/iaboutj.htmPUBhttps://old.scielo.br/oai/scielo-oai.php||r.arvore@ufv.br1806-90880100-6762opendoar:2018-02-19T00:00Revista Árvore (Online) - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) |
title |
ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) |
spellingShingle |
ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) Binoti,Daniel Henrique Breda Hypsometric regression Forest measurement Artificial neural networks |
title_short |
ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) |
title_full |
ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) |
title_fullStr |
ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) |
title_full_unstemmed |
ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) |
title_sort |
ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) |
author |
Binoti,Daniel Henrique Breda |
author_facet |
Binoti,Daniel Henrique Breda Duarte,Paulo Junio Silva,Mayra Luiza Marques da Silva,Gilson Fernandes da Leite,Helio Garcia Mendonça,Adriano Ribeiro de Andrade,Valdir Carlos Lima De Vega,Andreina Epifanía Dávila |
author_role |
author |
author2 |
Duarte,Paulo Junio Silva,Mayra Luiza Marques da Silva,Gilson Fernandes da Leite,Helio Garcia Mendonça,Adriano Ribeiro de Andrade,Valdir Carlos Lima De Vega,Andreina Epifanía Dávila |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Binoti,Daniel Henrique Breda Duarte,Paulo Junio Silva,Mayra Luiza Marques da Silva,Gilson Fernandes da Leite,Helio Garcia Mendonça,Adriano Ribeiro de Andrade,Valdir Carlos Lima De Vega,Andreina Epifanía Dávila |
dc.subject.por.fl_str_mv |
Hypsometric regression Forest measurement Artificial neural networks |
topic |
Hypsometric regression Forest measurement Artificial neural networks |
description |
ABSTRACT The aim of this study was to evaluate the method of neuroevolution of augmenting topologies (NEAT) to adjust the weights and the topology of artificial neural networks (ANNs) in the estimation of tree height in a clonal population of eucalyptus, and compare with estimates obtained by a hypsometric regression model. To estimate the total tree height (Ht), the RNAs and the regression model, we used as variables a diameter of 1.3 m height (dbh) and the dominant height (Hd). The RNAs were adjusted and applied to the computer system NeuroForest, varying the size of the initial population (the genetic algorithm parameter) and the density of initial connections. Estimates of the total height of the trees obtained with the use of RNA and the regression model were evaluated based on the correlation coefficient, the percentage of errors scatter plot, the percentage frequency histogram of percentage errors, and the root mean square error (root mean square error - RMSE). Various settings which resulted in superior statistics to the hypsometric regression model were found. Connections had the highest correlation and the lowest RMSE% with a population size value of 300 and an initial density of 0.1 RNA. The NEAT methodology proved effective in estimating the height of trees in clonal population of eucalyptus. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622017000300213 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622017000300213 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1806-90882017000300014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade de Investigações Florestais |
publisher.none.fl_str_mv |
Sociedade de Investigações Florestais |
dc.source.none.fl_str_mv |
Revista Árvore v.41 n.3 2017 reponame:Revista Árvore (Online) instname:Universidade Federal de Viçosa (UFV) instacron:SIF |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
SIF |
institution |
SIF |
reponame_str |
Revista Árvore (Online) |
collection |
Revista Árvore (Online) |
repository.name.fl_str_mv |
Revista Árvore (Online) - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
||r.arvore@ufv.br |
_version_ |
1750318002543263744 |