ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)

Detalhes bibliográficos
Autor(a) principal: Binoti,Daniel Henrique Breda
Data de Publicação: 2017
Outros Autores: Duarte,Paulo Junio, Silva,Mayra Luiza Marques da, Silva,Gilson Fernandes da, Leite,Helio Garcia, Mendonça,Adriano Ribeiro de, Andrade,Valdir Carlos Lima De, Vega,Andreina Epifanía Dávila
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Árvore (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622017000300213
Resumo: ABSTRACT The aim of this study was to evaluate the method of neuroevolution of augmenting topologies (NEAT) to adjust the weights and the topology of artificial neural networks (ANNs) in the estimation of tree height in a clonal population of eucalyptus, and compare with estimates obtained by a hypsometric regression model. To estimate the total tree height (Ht), the RNAs and the regression model, we used as variables a diameter of 1.3 m height (dbh) and the dominant height (Hd). The RNAs were adjusted and applied to the computer system NeuroForest, varying the size of the initial population (the genetic algorithm parameter) and the density of initial connections. Estimates of the total height of the trees obtained with the use of RNA and the regression model were evaluated based on the correlation coefficient, the percentage of errors scatter plot, the percentage frequency histogram of percentage errors, and the root mean square error (root mean square error - RMSE). Various settings which resulted in superior statistics to the hypsometric regression model were found. Connections had the highest correlation and the lowest RMSE% with a population size value of 300 and an initial density of 0.1 RNA. The NEAT methodology proved effective in estimating the height of trees in clonal population of eucalyptus.
id SIF-1_6f9ff1dbb1235a68088212f0d748d2e0
oai_identifier_str oai:scielo:S0100-67622017000300213
network_acronym_str SIF-1
network_name_str Revista Árvore (Online)
repository_id_str
spelling ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)Hypsometric regressionForest measurementArtificial neural networksABSTRACT The aim of this study was to evaluate the method of neuroevolution of augmenting topologies (NEAT) to adjust the weights and the topology of artificial neural networks (ANNs) in the estimation of tree height in a clonal population of eucalyptus, and compare with estimates obtained by a hypsometric regression model. To estimate the total tree height (Ht), the RNAs and the regression model, we used as variables a diameter of 1.3 m height (dbh) and the dominant height (Hd). The RNAs were adjusted and applied to the computer system NeuroForest, varying the size of the initial population (the genetic algorithm parameter) and the density of initial connections. Estimates of the total height of the trees obtained with the use of RNA and the regression model were evaluated based on the correlation coefficient, the percentage of errors scatter plot, the percentage frequency histogram of percentage errors, and the root mean square error (root mean square error - RMSE). Various settings which resulted in superior statistics to the hypsometric regression model were found. Connections had the highest correlation and the lowest RMSE% with a population size value of 300 and an initial density of 0.1 RNA. The NEAT methodology proved effective in estimating the height of trees in clonal population of eucalyptus.Sociedade de Investigações Florestais2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622017000300213Revista Árvore v.41 n.3 2017reponame:Revista Árvore (Online)instname:Universidade Federal de Viçosa (UFV)instacron:SIF10.1590/1806-90882017000300014info:eu-repo/semantics/openAccessBinoti,Daniel Henrique BredaDuarte,Paulo JunioSilva,Mayra Luiza Marques daSilva,Gilson Fernandes daLeite,Helio GarciaMendonça,Adriano Ribeiro deAndrade,Valdir Carlos Lima DeVega,Andreina Epifanía Dávilaeng2018-02-19T00:00:00Zoai:scielo:S0100-67622017000300213Revistahttp://www.scielo.br/revistas/rarv/iaboutj.htmPUBhttps://old.scielo.br/oai/scielo-oai.php||r.arvore@ufv.br1806-90880100-6762opendoar:2018-02-19T00:00Revista Árvore (Online) - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)
title ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)
spellingShingle ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)
Binoti,Daniel Henrique Breda
Hypsometric regression
Forest measurement
Artificial neural networks
title_short ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)
title_full ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)
title_fullStr ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)
title_full_unstemmed ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)
title_sort ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)
author Binoti,Daniel Henrique Breda
author_facet Binoti,Daniel Henrique Breda
Duarte,Paulo Junio
Silva,Mayra Luiza Marques da
Silva,Gilson Fernandes da
Leite,Helio Garcia
Mendonça,Adriano Ribeiro de
Andrade,Valdir Carlos Lima De
Vega,Andreina Epifanía Dávila
author_role author
author2 Duarte,Paulo Junio
Silva,Mayra Luiza Marques da
Silva,Gilson Fernandes da
Leite,Helio Garcia
Mendonça,Adriano Ribeiro de
Andrade,Valdir Carlos Lima De
Vega,Andreina Epifanía Dávila
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Binoti,Daniel Henrique Breda
Duarte,Paulo Junio
Silva,Mayra Luiza Marques da
Silva,Gilson Fernandes da
Leite,Helio Garcia
Mendonça,Adriano Ribeiro de
Andrade,Valdir Carlos Lima De
Vega,Andreina Epifanía Dávila
dc.subject.por.fl_str_mv Hypsometric regression
Forest measurement
Artificial neural networks
topic Hypsometric regression
Forest measurement
Artificial neural networks
description ABSTRACT The aim of this study was to evaluate the method of neuroevolution of augmenting topologies (NEAT) to adjust the weights and the topology of artificial neural networks (ANNs) in the estimation of tree height in a clonal population of eucalyptus, and compare with estimates obtained by a hypsometric regression model. To estimate the total tree height (Ht), the RNAs and the regression model, we used as variables a diameter of 1.3 m height (dbh) and the dominant height (Hd). The RNAs were adjusted and applied to the computer system NeuroForest, varying the size of the initial population (the genetic algorithm parameter) and the density of initial connections. Estimates of the total height of the trees obtained with the use of RNA and the regression model were evaluated based on the correlation coefficient, the percentage of errors scatter plot, the percentage frequency histogram of percentage errors, and the root mean square error (root mean square error - RMSE). Various settings which resulted in superior statistics to the hypsometric regression model were found. Connections had the highest correlation and the lowest RMSE% with a population size value of 300 and an initial density of 0.1 RNA. The NEAT methodology proved effective in estimating the height of trees in clonal population of eucalyptus.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622017000300213
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622017000300213
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1806-90882017000300014
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade de Investigações Florestais
publisher.none.fl_str_mv Sociedade de Investigações Florestais
dc.source.none.fl_str_mv Revista Árvore v.41 n.3 2017
reponame:Revista Árvore (Online)
instname:Universidade Federal de Viçosa (UFV)
instacron:SIF
instname_str Universidade Federal de Viçosa (UFV)
instacron_str SIF
institution SIF
reponame_str Revista Árvore (Online)
collection Revista Árvore (Online)
repository.name.fl_str_mv Revista Árvore (Online) - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv ||r.arvore@ufv.br
_version_ 1750318002543263744