A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382009000300002 |
Resumo: | Minimum sum-of-squares clustering (MSSC) consists in partitioning a given set of n points into k clusters in order to minimize the sum of squared distances from the points to the centroid of their cluster. Recently, Peng & Xia (2005) established the equivalence between 0-1 semidefinite programming (SDP) and MSSC. In this paper, we propose a branch-and-cut algorithm for the underlying 0-1 SDP model. The algorithm obtains exact solutions for fairly large data sets with computing times comparable with those of the best exact method found in the literature. |
id |
SOBRAPO-1_12377b42ee4a2ae4bd828b6a05e9eb05 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382009000300002 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
A branch-and-cut SDP-based algorithm for minimum sum-of-squares clusteringclusteringsum-of-squaressemidefinite programmingMinimum sum-of-squares clustering (MSSC) consists in partitioning a given set of n points into k clusters in order to minimize the sum of squared distances from the points to the centroid of their cluster. Recently, Peng & Xia (2005) established the equivalence between 0-1 semidefinite programming (SDP) and MSSC. In this paper, we propose a branch-and-cut algorithm for the underlying 0-1 SDP model. The algorithm obtains exact solutions for fairly large data sets with computing times comparable with those of the best exact method found in the literature.Sociedade Brasileira de Pesquisa Operacional2009-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382009000300002Pesquisa Operacional v.29 n.3 2009reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382009000300002info:eu-repo/semantics/openAccessAloise,DanielHansen,Pierreeng2010-02-03T00:00:00Zoai:scielo:S0101-74382009000300002Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2010-02-03T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering |
title |
A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering |
spellingShingle |
A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering Aloise,Daniel clustering sum-of-squares semidefinite programming |
title_short |
A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering |
title_full |
A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering |
title_fullStr |
A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering |
title_full_unstemmed |
A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering |
title_sort |
A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering |
author |
Aloise,Daniel |
author_facet |
Aloise,Daniel Hansen,Pierre |
author_role |
author |
author2 |
Hansen,Pierre |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Aloise,Daniel Hansen,Pierre |
dc.subject.por.fl_str_mv |
clustering sum-of-squares semidefinite programming |
topic |
clustering sum-of-squares semidefinite programming |
description |
Minimum sum-of-squares clustering (MSSC) consists in partitioning a given set of n points into k clusters in order to minimize the sum of squared distances from the points to the centroid of their cluster. Recently, Peng & Xia (2005) established the equivalence between 0-1 semidefinite programming (SDP) and MSSC. In this paper, we propose a branch-and-cut algorithm for the underlying 0-1 SDP model. The algorithm obtains exact solutions for fairly large data sets with computing times comparable with those of the best exact method found in the literature. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382009000300002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382009000300002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382009000300002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.29 n.3 2009 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318016992641024 |