Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200004 |
Resumo: | Let C be a n×n symmetric matrix. For each integer 1 < k < n we consider the minimization problem m(ε): = minX{ Tr{CX} + ε(X)}. Here the variable X is an n×n symmetric matrix, whose eigenvalues satisfy <img border=0 src="../../../../img/revistas/cam/v29n2/a04img01.gif"> the number ε is a positive (perturbation) parameter and is a Lipchitz-continuous function (in general nonlinear). It is well known that when ε = 0 the minimum value, m(0), is the sum of the smallest k eigenvalues of C. Assuming that the eigenvalues of C satisfy λ1(C) < ... < λk(C) < λk+1(C) < ∙∙∙ < λn(C), we establish the following upper and lower bounds for the minimum value m(ε): <img border=0 src="../../../../img/revistas/cam/v29n2/a04img02.gif"> where <img border=0 src="../../../../img/revistas/cam/v29n2/f4_barra.gif" align=absmiddle>is the minimum value of over the solution set of unperturbed problem and L is the Lipschitz-constant of . The above inequality shows that the error by replacing the upper bound (or the lower bound) by the exact value is at least quadratic in the perturbation parameter. We also treat the case that λk+1(C) = λk(C). We compare the exact solution with the upper and lower bounds for some examples. Mathematical subject classification: 15A42, 15A18, 90C22. |
id |
SBMAC-2_e291aa87759b63648053d606d9f46bbf |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022010000200004 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Error bound for a perturbed minimization problem related with the sum of smallest eigenvaluesmatrix analysissum of smallest eigenvaluesminimization problem involving matricesnonlinear perturbationsemidefinite programmingLet C be a n×n symmetric matrix. For each integer 1 < k < n we consider the minimization problem m(ε): = minX{ Tr{CX} + ε(X)}. Here the variable X is an n×n symmetric matrix, whose eigenvalues satisfy <img border=0 src="../../../../img/revistas/cam/v29n2/a04img01.gif"> the number ε is a positive (perturbation) parameter and is a Lipchitz-continuous function (in general nonlinear). It is well known that when ε = 0 the minimum value, m(0), is the sum of the smallest k eigenvalues of C. Assuming that the eigenvalues of C satisfy λ1(C) < ... < λk(C) < λk+1(C) < ∙∙∙ < λn(C), we establish the following upper and lower bounds for the minimum value m(ε): <img border=0 src="../../../../img/revistas/cam/v29n2/a04img02.gif"> where <img border=0 src="../../../../img/revistas/cam/v29n2/f4_barra.gif" align=absmiddle>is the minimum value of over the solution set of unperturbed problem and L is the Lipschitz-constant of . The above inequality shows that the error by replacing the upper bound (or the lower bound) by the exact value is at least quadratic in the perturbation parameter. We also treat the case that λk+1(C) = λk(C). We compare the exact solution with the upper and lower bounds for some examples. Mathematical subject classification: 15A42, 15A18, 90C22.Sociedade Brasileira de Matemática Aplicada e Computacional2010-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200004Computational & Applied Mathematics v.29 n.2 2010reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022010000200004info:eu-repo/semantics/openAccessTravaglia,Marcos Vinicioeng2010-07-23T00:00:00Zoai:scielo:S1807-03022010000200004Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2010-07-23T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues |
title |
Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues |
spellingShingle |
Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues Travaglia,Marcos Vinicio matrix analysis sum of smallest eigenvalues minimization problem involving matrices nonlinear perturbation semidefinite programming |
title_short |
Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues |
title_full |
Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues |
title_fullStr |
Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues |
title_full_unstemmed |
Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues |
title_sort |
Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues |
author |
Travaglia,Marcos Vinicio |
author_facet |
Travaglia,Marcos Vinicio |
author_role |
author |
dc.contributor.author.fl_str_mv |
Travaglia,Marcos Vinicio |
dc.subject.por.fl_str_mv |
matrix analysis sum of smallest eigenvalues minimization problem involving matrices nonlinear perturbation semidefinite programming |
topic |
matrix analysis sum of smallest eigenvalues minimization problem involving matrices nonlinear perturbation semidefinite programming |
description |
Let C be a n×n symmetric matrix. For each integer 1 < k < n we consider the minimization problem m(ε): = minX{ Tr{CX} + ε(X)}. Here the variable X is an n×n symmetric matrix, whose eigenvalues satisfy <img border=0 src="../../../../img/revistas/cam/v29n2/a04img01.gif"> the number ε is a positive (perturbation) parameter and is a Lipchitz-continuous function (in general nonlinear). It is well known that when ε = 0 the minimum value, m(0), is the sum of the smallest k eigenvalues of C. Assuming that the eigenvalues of C satisfy λ1(C) < ... < λk(C) < λk+1(C) < ∙∙∙ < λn(C), we establish the following upper and lower bounds for the minimum value m(ε): <img border=0 src="../../../../img/revistas/cam/v29n2/a04img02.gif"> where <img border=0 src="../../../../img/revistas/cam/v29n2/f4_barra.gif" align=absmiddle>is the minimum value of over the solution set of unperturbed problem and L is the Lipschitz-constant of . The above inequality shows that the error by replacing the upper bound (or the lower bound) by the exact value is at least quadratic in the perturbation parameter. We also treat the case that λk+1(C) = λk(C). We compare the exact solution with the upper and lower bounds for some examples. Mathematical subject classification: 15A42, 15A18, 90C22. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200004 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1807-03022010000200004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.29 n.2 2010 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890208722944 |