Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues

Detalhes bibliográficos
Autor(a) principal: Travaglia,Marcos Vinicio
Data de Publicação: 2010
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200004
Resumo: Let C be a n×n symmetric matrix. For each integer 1 < k < n we consider the minimization problem m(ε): = minX{ Tr{CX} + εƒ(X)}. Here the variable X is an n×n symmetric matrix, whose eigenvalues satisfy <img border=0 src="../../../../img/revistas/cam/v29n2/a04img01.gif"> the number ε is a positive (perturbation) parameter and ƒ is a Lipchitz-continuous function (in general nonlinear). It is well known that when ε = 0 the minimum value, m(0), is the sum of the smallest k eigenvalues of C. Assuming that the eigenvalues of C satisfy λ1(C) < ... < λk(C) < λk+1(C) < ∙∙∙ < λn(C), we establish the following upper and lower bounds for the minimum value m(ε): <img border=0 src="../../../../img/revistas/cam/v29n2/a04img02.gif"> where <img border=0 src="../../../../img/revistas/cam/v29n2/f4_barra.gif" align=absmiddle>is the minimum value of ƒ over the solution set of unperturbed problem and L is the Lipschitz-constant of ƒ. The above inequality shows that the error by replacing the upper bound (or the lower bound) by the exact value is at least quadratic in the perturbation parameter. We also treat the case that λk+1(C) = λk(C). We compare the exact solution with the upper and lower bounds for some examples. Mathematical subject classification: 15A42, 15A18, 90C22.
id SBMAC-2_e291aa87759b63648053d606d9f46bbf
oai_identifier_str oai:scielo:S1807-03022010000200004
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling Error bound for a perturbed minimization problem related with the sum of smallest eigenvaluesmatrix analysissum of smallest eigenvaluesminimization problem involving matricesnonlinear perturbationsemidefinite programmingLet C be a n×n symmetric matrix. For each integer 1 < k < n we consider the minimization problem m(ε): = minX{ Tr{CX} + εƒ(X)}. Here the variable X is an n×n symmetric matrix, whose eigenvalues satisfy <img border=0 src="../../../../img/revistas/cam/v29n2/a04img01.gif"> the number ε is a positive (perturbation) parameter and ƒ is a Lipchitz-continuous function (in general nonlinear). It is well known that when ε = 0 the minimum value, m(0), is the sum of the smallest k eigenvalues of C. Assuming that the eigenvalues of C satisfy λ1(C) < ... < λk(C) < λk+1(C) < ∙∙∙ < λn(C), we establish the following upper and lower bounds for the minimum value m(ε): <img border=0 src="../../../../img/revistas/cam/v29n2/a04img02.gif"> where <img border=0 src="../../../../img/revistas/cam/v29n2/f4_barra.gif" align=absmiddle>is the minimum value of ƒ over the solution set of unperturbed problem and L is the Lipschitz-constant of ƒ. The above inequality shows that the error by replacing the upper bound (or the lower bound) by the exact value is at least quadratic in the perturbation parameter. We also treat the case that λk+1(C) = λk(C). We compare the exact solution with the upper and lower bounds for some examples. Mathematical subject classification: 15A42, 15A18, 90C22.Sociedade Brasileira de Matemática Aplicada e Computacional2010-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200004Computational &amp; Applied Mathematics v.29 n.2 2010reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022010000200004info:eu-repo/semantics/openAccessTravaglia,Marcos Vinicioeng2010-07-23T00:00:00Zoai:scielo:S1807-03022010000200004Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2010-07-23T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues
title Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues
spellingShingle Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues
Travaglia,Marcos Vinicio
matrix analysis
sum of smallest eigenvalues
minimization problem involving matrices
nonlinear perturbation
semidefinite programming
title_short Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues
title_full Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues
title_fullStr Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues
title_full_unstemmed Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues
title_sort Error bound for a perturbed minimization problem related with the sum of smallest eigenvalues
author Travaglia,Marcos Vinicio
author_facet Travaglia,Marcos Vinicio
author_role author
dc.contributor.author.fl_str_mv Travaglia,Marcos Vinicio
dc.subject.por.fl_str_mv matrix analysis
sum of smallest eigenvalues
minimization problem involving matrices
nonlinear perturbation
semidefinite programming
topic matrix analysis
sum of smallest eigenvalues
minimization problem involving matrices
nonlinear perturbation
semidefinite programming
description Let C be a n×n symmetric matrix. For each integer 1 < k < n we consider the minimization problem m(ε): = minX{ Tr{CX} + εƒ(X)}. Here the variable X is an n×n symmetric matrix, whose eigenvalues satisfy <img border=0 src="../../../../img/revistas/cam/v29n2/a04img01.gif"> the number ε is a positive (perturbation) parameter and ƒ is a Lipchitz-continuous function (in general nonlinear). It is well known that when ε = 0 the minimum value, m(0), is the sum of the smallest k eigenvalues of C. Assuming that the eigenvalues of C satisfy λ1(C) < ... < λk(C) < λk+1(C) < ∙∙∙ < λn(C), we establish the following upper and lower bounds for the minimum value m(ε): <img border=0 src="../../../../img/revistas/cam/v29n2/a04img02.gif"> where <img border=0 src="../../../../img/revistas/cam/v29n2/f4_barra.gif" align=absmiddle>is the minimum value of ƒ over the solution set of unperturbed problem and L is the Lipschitz-constant of ƒ. The above inequality shows that the error by replacing the upper bound (or the lower bound) by the exact value is at least quadratic in the perturbation parameter. We also treat the case that λk+1(C) = λk(C). We compare the exact solution with the upper and lower bounds for some examples. Mathematical subject classification: 15A42, 15A18, 90C22.
publishDate 2010
dc.date.none.fl_str_mv 2010-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200004
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200004
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1807-03022010000200004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational &amp; Applied Mathematics v.29 n.2 2010
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734890208722944