On a conjecture concerning helly circle graphs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382003000100016 |
Resumo: | We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle), and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000) states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges). Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it. |
id |
SOBRAPO-1_2e8c0a41a3a2791bbcc5c5d12b3f88ad |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382003000100016 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
On a conjecture concerning helly circle graphscircle graphHelly circle graphWe say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle), and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000) states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges). Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it.Sociedade Brasileira de Pesquisa Operacional2003-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382003000100016Pesquisa Operacional v.23 n.1 2003reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382003000100016info:eu-repo/semantics/openAccessDurán,GuillermoGravano,AgustínGroshaus,MarinaProtti,FábioSzwarcfiter,Jayme L.eng2003-05-26T00:00:00Zoai:scielo:S0101-74382003000100016Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2003-05-26T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
On a conjecture concerning helly circle graphs |
title |
On a conjecture concerning helly circle graphs |
spellingShingle |
On a conjecture concerning helly circle graphs Durán,Guillermo circle graph Helly circle graph |
title_short |
On a conjecture concerning helly circle graphs |
title_full |
On a conjecture concerning helly circle graphs |
title_fullStr |
On a conjecture concerning helly circle graphs |
title_full_unstemmed |
On a conjecture concerning helly circle graphs |
title_sort |
On a conjecture concerning helly circle graphs |
author |
Durán,Guillermo |
author_facet |
Durán,Guillermo Gravano,Agustín Groshaus,Marina Protti,Fábio Szwarcfiter,Jayme L. |
author_role |
author |
author2 |
Gravano,Agustín Groshaus,Marina Protti,Fábio Szwarcfiter,Jayme L. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Durán,Guillermo Gravano,Agustín Groshaus,Marina Protti,Fábio Szwarcfiter,Jayme L. |
dc.subject.por.fl_str_mv |
circle graph Helly circle graph |
topic |
circle graph Helly circle graph |
description |
We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle), and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000) states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges). Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382003000100016 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382003000100016 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382003000100016 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.23 n.1 2003 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318016247103488 |