A fuzzy/Bayesian approach for the time series change point detection problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000200002 |
Resumo: | This paper addresses the change point detection problem in time series. A methodology based on the Metropolis-Hastings algorithm applied to time series modeled as a process with Beta distribution is discussed. In order to make this methodology useful in practice, a fuzzy cluster technique is applied to the initial time series at first, generating a new data set with Beta distribution. Bayesian procedures are considered for inference and the Metropolis-Hastings algorithm is used to sample from the posteriors. In the clustering process, a Kohonen neural network is used having as objective to find the best centers of the time series to be used in the fuzzyfication process. Finally, it will be presented a simulation results in the series of the electric energy consumption in Brazil, between January of 1976 and December of 2000, five months before the blackout occurred in 2001. Such result illustrates the efficiency of the proposed methodology for change point detection in time series. |
id |
SOBRAPO-1_3214fead6ce327453042ea175aefd984 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382011000200002 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
A fuzzy/Bayesian approach for the time series change point detection problemchange pointfuzzy clusteringMetropolis-HastingsThis paper addresses the change point detection problem in time series. A methodology based on the Metropolis-Hastings algorithm applied to time series modeled as a process with Beta distribution is discussed. In order to make this methodology useful in practice, a fuzzy cluster technique is applied to the initial time series at first, generating a new data set with Beta distribution. Bayesian procedures are considered for inference and the Metropolis-Hastings algorithm is used to sample from the posteriors. In the clustering process, a Kohonen neural network is used having as objective to find the best centers of the time series to be used in the fuzzyfication process. Finally, it will be presented a simulation results in the series of the electric energy consumption in Brazil, between January of 1976 and December of 2000, five months before the blackout occurred in 2001. Such result illustrates the efficiency of the proposed methodology for change point detection in time series.Sociedade Brasileira de Pesquisa Operacional2011-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000200002Pesquisa Operacional v.31 n.2 2011reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382011000200002info:eu-repo/semantics/openAccessD'Angelo,Marcos Flávio S.V.Palhares,Reinaldo M.Takahashi,Ricardo H.C.H. Loschi,Rosangelaeng2011-08-05T00:00:00Zoai:scielo:S0101-74382011000200002Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2011-08-05T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
A fuzzy/Bayesian approach for the time series change point detection problem |
title |
A fuzzy/Bayesian approach for the time series change point detection problem |
spellingShingle |
A fuzzy/Bayesian approach for the time series change point detection problem D'Angelo,Marcos Flávio S.V. change point fuzzy clustering Metropolis-Hastings |
title_short |
A fuzzy/Bayesian approach for the time series change point detection problem |
title_full |
A fuzzy/Bayesian approach for the time series change point detection problem |
title_fullStr |
A fuzzy/Bayesian approach for the time series change point detection problem |
title_full_unstemmed |
A fuzzy/Bayesian approach for the time series change point detection problem |
title_sort |
A fuzzy/Bayesian approach for the time series change point detection problem |
author |
D'Angelo,Marcos Flávio S.V. |
author_facet |
D'Angelo,Marcos Flávio S.V. Palhares,Reinaldo M. Takahashi,Ricardo H.C. H. Loschi,Rosangela |
author_role |
author |
author2 |
Palhares,Reinaldo M. Takahashi,Ricardo H.C. H. Loschi,Rosangela |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
D'Angelo,Marcos Flávio S.V. Palhares,Reinaldo M. Takahashi,Ricardo H.C. H. Loschi,Rosangela |
dc.subject.por.fl_str_mv |
change point fuzzy clustering Metropolis-Hastings |
topic |
change point fuzzy clustering Metropolis-Hastings |
description |
This paper addresses the change point detection problem in time series. A methodology based on the Metropolis-Hastings algorithm applied to time series modeled as a process with Beta distribution is discussed. In order to make this methodology useful in practice, a fuzzy cluster technique is applied to the initial time series at first, generating a new data set with Beta distribution. Bayesian procedures are considered for inference and the Metropolis-Hastings algorithm is used to sample from the posteriors. In the clustering process, a Kohonen neural network is used having as objective to find the best centers of the time series to be used in the fuzzyfication process. Finally, it will be presented a simulation results in the series of the electric energy consumption in Brazil, between January of 1976 and December of 2000, five months before the blackout occurred in 2001. Such result illustrates the efficiency of the proposed methodology for change point detection in time series. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000200002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000200002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382011000200002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.31 n.2 2011 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318017328185344 |