A fuzzy/Bayesian approach for the time series change point detection problem

Detalhes bibliográficos
Autor(a) principal: D'Angelo,Marcos Flávio S.V.
Data de Publicação: 2011
Outros Autores: Palhares,Reinaldo M., Takahashi,Ricardo H.C., H. Loschi,Rosangela
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000200002
Resumo: This paper addresses the change point detection problem in time series. A methodology based on the Metropolis-Hastings algorithm applied to time series modeled as a process with Beta distribution is discussed. In order to make this methodology useful in practice, a fuzzy cluster technique is applied to the initial time series at first, generating a new data set with Beta distribution. Bayesian procedures are considered for inference and the Metropolis-Hastings algorithm is used to sample from the posteriors. In the clustering process, a Kohonen neural network is used having as objective to find the best centers of the time series to be used in the fuzzyfication process. Finally, it will be presented a simulation results in the series of the electric energy consumption in Brazil, between January of 1976 and December of 2000, five months before the blackout occurred in 2001. Such result illustrates the efficiency of the proposed methodology for change point detection in time series.
id SOBRAPO-1_3214fead6ce327453042ea175aefd984
oai_identifier_str oai:scielo:S0101-74382011000200002
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling A fuzzy/Bayesian approach for the time series change point detection problemchange pointfuzzy clusteringMetropolis-HastingsThis paper addresses the change point detection problem in time series. A methodology based on the Metropolis-Hastings algorithm applied to time series modeled as a process with Beta distribution is discussed. In order to make this methodology useful in practice, a fuzzy cluster technique is applied to the initial time series at first, generating a new data set with Beta distribution. Bayesian procedures are considered for inference and the Metropolis-Hastings algorithm is used to sample from the posteriors. In the clustering process, a Kohonen neural network is used having as objective to find the best centers of the time series to be used in the fuzzyfication process. Finally, it will be presented a simulation results in the series of the electric energy consumption in Brazil, between January of 1976 and December of 2000, five months before the blackout occurred in 2001. Such result illustrates the efficiency of the proposed methodology for change point detection in time series.Sociedade Brasileira de Pesquisa Operacional2011-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000200002Pesquisa Operacional v.31 n.2 2011reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382011000200002info:eu-repo/semantics/openAccessD'Angelo,Marcos Flávio S.V.Palhares,Reinaldo M.Takahashi,Ricardo H.C.H. Loschi,Rosangelaeng2011-08-05T00:00:00Zoai:scielo:S0101-74382011000200002Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2011-08-05T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv A fuzzy/Bayesian approach for the time series change point detection problem
title A fuzzy/Bayesian approach for the time series change point detection problem
spellingShingle A fuzzy/Bayesian approach for the time series change point detection problem
D'Angelo,Marcos Flávio S.V.
change point
fuzzy clustering
Metropolis-Hastings
title_short A fuzzy/Bayesian approach for the time series change point detection problem
title_full A fuzzy/Bayesian approach for the time series change point detection problem
title_fullStr A fuzzy/Bayesian approach for the time series change point detection problem
title_full_unstemmed A fuzzy/Bayesian approach for the time series change point detection problem
title_sort A fuzzy/Bayesian approach for the time series change point detection problem
author D'Angelo,Marcos Flávio S.V.
author_facet D'Angelo,Marcos Flávio S.V.
Palhares,Reinaldo M.
Takahashi,Ricardo H.C.
H. Loschi,Rosangela
author_role author
author2 Palhares,Reinaldo M.
Takahashi,Ricardo H.C.
H. Loschi,Rosangela
author2_role author
author
author
dc.contributor.author.fl_str_mv D'Angelo,Marcos Flávio S.V.
Palhares,Reinaldo M.
Takahashi,Ricardo H.C.
H. Loschi,Rosangela
dc.subject.por.fl_str_mv change point
fuzzy clustering
Metropolis-Hastings
topic change point
fuzzy clustering
Metropolis-Hastings
description This paper addresses the change point detection problem in time series. A methodology based on the Metropolis-Hastings algorithm applied to time series modeled as a process with Beta distribution is discussed. In order to make this methodology useful in practice, a fuzzy cluster technique is applied to the initial time series at first, generating a new data set with Beta distribution. Bayesian procedures are considered for inference and the Metropolis-Hastings algorithm is used to sample from the posteriors. In the clustering process, a Kohonen neural network is used having as objective to find the best centers of the time series to be used in the fuzzyfication process. Finally, it will be presented a simulation results in the series of the electric energy consumption in Brazil, between January of 1976 and December of 2000, five months before the blackout occurred in 2001. Such result illustrates the efficiency of the proposed methodology for change point detection in time series.
publishDate 2011
dc.date.none.fl_str_mv 2011-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000200002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000200002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0101-74382011000200002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.31 n.2 2011
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318017328185344