Application of stochastic models to determine customers lifetime value for a Brazilian supermarkets network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382008000300009 |
Resumo: | This paper studies strategies to access customer lifetime value (CLV). Traditionally, heuristics based on recency, frequency and monetary value variables (RFM) are used to determine the best customers. Here, some forms of directly exploring these parameters to predict CLV are compared to an approach based on fitting a stochastic model. The model employed is a composition of a model for the number of transactions along the residual lifetime and a model for the value spent. New evidence is raised on the effect of aggregating transactions monthly. The data analyzed refer to two years of purchases of a group of customers of the same entrance cohort of a fidelity program cadastre of a supermarkets network in Rio de Janeiro. Using the first year to calibrate and the second year to validate the models, good fit of both models to the series of individual data and coherent CLV predictions are obtained. |
id |
SOBRAPO-1_64c694f0126df561717f27baf18acab6 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382008000300009 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
Application of stochastic models to determine customers lifetime value for a Brazilian supermarkets networkcustomer lifetime valueknowledge managementmarketingretailmodelingThis paper studies strategies to access customer lifetime value (CLV). Traditionally, heuristics based on recency, frequency and monetary value variables (RFM) are used to determine the best customers. Here, some forms of directly exploring these parameters to predict CLV are compared to an approach based on fitting a stochastic model. The model employed is a composition of a model for the number of transactions along the residual lifetime and a model for the value spent. New evidence is raised on the effect of aggregating transactions monthly. The data analyzed refer to two years of purchases of a group of customers of the same entrance cohort of a fidelity program cadastre of a supermarkets network in Rio de Janeiro. Using the first year to calibrate and the second year to validate the models, good fit of both models to the series of individual data and coherent CLV predictions are obtained.Sociedade Brasileira de Pesquisa Operacional2008-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382008000300009Pesquisa Operacional v.28 n.3 2008reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382008000300009info:eu-repo/semantics/openAccessSant'Anna,Annibal ParrachoRibeiro,Rodrigo Otavio de Araujoeng2009-01-26T00:00:00Zoai:scielo:S0101-74382008000300009Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2009-01-26T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
Application of stochastic models to determine customers lifetime value for a Brazilian supermarkets network |
title |
Application of stochastic models to determine customers lifetime value for a Brazilian supermarkets network |
spellingShingle |
Application of stochastic models to determine customers lifetime value for a Brazilian supermarkets network Sant'Anna,Annibal Parracho customer lifetime value knowledge management marketing retail modeling |
title_short |
Application of stochastic models to determine customers lifetime value for a Brazilian supermarkets network |
title_full |
Application of stochastic models to determine customers lifetime value for a Brazilian supermarkets network |
title_fullStr |
Application of stochastic models to determine customers lifetime value for a Brazilian supermarkets network |
title_full_unstemmed |
Application of stochastic models to determine customers lifetime value for a Brazilian supermarkets network |
title_sort |
Application of stochastic models to determine customers lifetime value for a Brazilian supermarkets network |
author |
Sant'Anna,Annibal Parracho |
author_facet |
Sant'Anna,Annibal Parracho Ribeiro,Rodrigo Otavio de Araujo |
author_role |
author |
author2 |
Ribeiro,Rodrigo Otavio de Araujo |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Sant'Anna,Annibal Parracho Ribeiro,Rodrigo Otavio de Araujo |
dc.subject.por.fl_str_mv |
customer lifetime value knowledge management marketing retail modeling |
topic |
customer lifetime value knowledge management marketing retail modeling |
description |
This paper studies strategies to access customer lifetime value (CLV). Traditionally, heuristics based on recency, frequency and monetary value variables (RFM) are used to determine the best customers. Here, some forms of directly exploring these parameters to predict CLV are compared to an approach based on fitting a stochastic model. The model employed is a composition of a model for the number of transactions along the residual lifetime and a model for the value spent. New evidence is raised on the effect of aggregating transactions monthly. The data analyzed refer to two years of purchases of a group of customers of the same entrance cohort of a fidelity program cadastre of a supermarkets network in Rio de Janeiro. Using the first year to calibrate and the second year to validate the models, good fit of both models to the series of individual data and coherent CLV predictions are obtained. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382008000300009 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382008000300009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382008000300009 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.28 n.3 2008 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318016952795136 |