The use of principal components and univariate charts to control multivariate processes

Detalhes bibliográficos
Autor(a) principal: Machado,Marcela A. G.
Data de Publicação: 2008
Outros Autores: Costa,Antonio F. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382008000100010
Resumo: In this article, we evaluate the performance of the T² chart based on the principal components (PC X chart) and the simultaneous univariate control charts based on the original variables (SU charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU , the SUPC and the T² charts we conclude that the SU X charts (SUPC charts) have a better overall performance when the variables are positively (negatively) correlated. We also develop the expression to obtain the power of two S² charts designed for monitoring the covariance matrix. These joint S² charts are, in the majority of the cases, more efficient than the generalized variance chart.
id SOBRAPO-1_8fd8af0838cfd524daf01965a2d063b8
oai_identifier_str oai:scielo:S0101-74382008000100010
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling The use of principal components and univariate charts to control multivariate processesprincipal componentsimultaneous univariate control chartsmultivariate process controlIn this article, we evaluate the performance of the T² chart based on the principal components (PC X chart) and the simultaneous univariate control charts based on the original variables (SU charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU , the SUPC and the T² charts we conclude that the SU X charts (SUPC charts) have a better overall performance when the variables are positively (negatively) correlated. We also develop the expression to obtain the power of two S² charts designed for monitoring the covariance matrix. These joint S² charts are, in the majority of the cases, more efficient than the generalized variance chart.Sociedade Brasileira de Pesquisa Operacional2008-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382008000100010Pesquisa Operacional v.28 n.1 2008reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382008000100010info:eu-repo/semantics/openAccessMachado,Marcela A. G.Costa,Antonio F. B.eng2008-06-23T00:00:00Zoai:scielo:S0101-74382008000100010Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2008-06-23T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv The use of principal components and univariate charts to control multivariate processes
title The use of principal components and univariate charts to control multivariate processes
spellingShingle The use of principal components and univariate charts to control multivariate processes
Machado,Marcela A. G.
principal component
simultaneous univariate control charts
multivariate process control
title_short The use of principal components and univariate charts to control multivariate processes
title_full The use of principal components and univariate charts to control multivariate processes
title_fullStr The use of principal components and univariate charts to control multivariate processes
title_full_unstemmed The use of principal components and univariate charts to control multivariate processes
title_sort The use of principal components and univariate charts to control multivariate processes
author Machado,Marcela A. G.
author_facet Machado,Marcela A. G.
Costa,Antonio F. B.
author_role author
author2 Costa,Antonio F. B.
author2_role author
dc.contributor.author.fl_str_mv Machado,Marcela A. G.
Costa,Antonio F. B.
dc.subject.por.fl_str_mv principal component
simultaneous univariate control charts
multivariate process control
topic principal component
simultaneous univariate control charts
multivariate process control
description In this article, we evaluate the performance of the T² chart based on the principal components (PC X chart) and the simultaneous univariate control charts based on the original variables (SU charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU , the SUPC and the T² charts we conclude that the SU X charts (SUPC charts) have a better overall performance when the variables are positively (negatively) correlated. We also develop the expression to obtain the power of two S² charts designed for monitoring the covariance matrix. These joint S² charts are, in the majority of the cases, more efficient than the generalized variance chart.
publishDate 2008
dc.date.none.fl_str_mv 2008-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382008000100010
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382008000100010
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0101-74382008000100010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.28 n.1 2008
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318016926580736