The use of principal components and univariate charts to control multivariate processes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/S0101-74382008000100010 http://hdl.handle.net/11449/70249 |
Resumo: | In this article, we evaluate the performance of the T2 chart based on the principal components (PC chart) and the simultaneous univariate control charts based on the original variables (SU X̄ charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU X̄, the SUPC and the T 2 charts we conclude that the SU X̄ charts (SUPC charts) have a better overall performance when the variables are positively (negatively) correlated. We also develop the expression to obtain the power of two S 2 charts designed for monitoring the covariance matrix. These joint S2 charts are, in the majority of the cases, more efficient than the generalized variance |S| chart. |
id |
UNSP_d5f50d2a628570f7bf4d5515d69a2942 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/70249 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
The use of principal components and univariate charts to control multivariate processesMultivariate process controlPrincipal componentSimultaneous univariate control chartsIn this article, we evaluate the performance of the T2 chart based on the principal components (PC chart) and the simultaneous univariate control charts based on the original variables (SU X̄ charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU X̄, the SUPC and the T 2 charts we conclude that the SU X̄ charts (SUPC charts) have a better overall performance when the variables are positively (negatively) correlated. We also develop the expression to obtain the power of two S 2 charts designed for monitoring the covariance matrix. These joint S2 charts are, in the majority of the cases, more efficient than the generalized variance |S| chart.Production Department São Paulo State University (UNESP), Guaratinguetá - SPProduction Department São Paulo State University (UNESP), Guaratinguetá - SPUniversidade Estadual Paulista (Unesp)Machado, Marcela A. G. [UNESP]Costa, Antonio F. B. [UNESP]2014-05-27T11:22:46Z2014-05-27T11:22:46Z2008-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article173-196application/pdfhttp://dx.doi.org/10.1590/S0101-74382008000100010Pesquisa Operacional, v. 28, n. 1, p. 173-196, 2008.0101-74381678-5142http://hdl.handle.net/11449/7024910.1590/S0101-74382008000100010S0101-743820080001000102-s2.0-467491305872-s2.0-46749130587.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPesquisa Operacional0,365info:eu-repo/semantics/openAccess2024-07-02T17:37:20Zoai:repositorio.unesp.br:11449/70249Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:43:51.845551Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
The use of principal components and univariate charts to control multivariate processes |
title |
The use of principal components and univariate charts to control multivariate processes |
spellingShingle |
The use of principal components and univariate charts to control multivariate processes Machado, Marcela A. G. [UNESP] Multivariate process control Principal component Simultaneous univariate control charts |
title_short |
The use of principal components and univariate charts to control multivariate processes |
title_full |
The use of principal components and univariate charts to control multivariate processes |
title_fullStr |
The use of principal components and univariate charts to control multivariate processes |
title_full_unstemmed |
The use of principal components and univariate charts to control multivariate processes |
title_sort |
The use of principal components and univariate charts to control multivariate processes |
author |
Machado, Marcela A. G. [UNESP] |
author_facet |
Machado, Marcela A. G. [UNESP] Costa, Antonio F. B. [UNESP] |
author_role |
author |
author2 |
Costa, Antonio F. B. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Machado, Marcela A. G. [UNESP] Costa, Antonio F. B. [UNESP] |
dc.subject.por.fl_str_mv |
Multivariate process control Principal component Simultaneous univariate control charts |
topic |
Multivariate process control Principal component Simultaneous univariate control charts |
description |
In this article, we evaluate the performance of the T2 chart based on the principal components (PC chart) and the simultaneous univariate control charts based on the original variables (SU X̄ charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU X̄, the SUPC and the T 2 charts we conclude that the SU X̄ charts (SUPC charts) have a better overall performance when the variables are positively (negatively) correlated. We also develop the expression to obtain the power of two S 2 charts designed for monitoring the covariance matrix. These joint S2 charts are, in the majority of the cases, more efficient than the generalized variance |S| chart. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01-01 2014-05-27T11:22:46Z 2014-05-27T11:22:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/S0101-74382008000100010 Pesquisa Operacional, v. 28, n. 1, p. 173-196, 2008. 0101-7438 1678-5142 http://hdl.handle.net/11449/70249 10.1590/S0101-74382008000100010 S0101-74382008000100010 2-s2.0-46749130587 2-s2.0-46749130587.pdf |
url |
http://dx.doi.org/10.1590/S0101-74382008000100010 http://hdl.handle.net/11449/70249 |
identifier_str_mv |
Pesquisa Operacional, v. 28, n. 1, p. 173-196, 2008. 0101-7438 1678-5142 10.1590/S0101-74382008000100010 S0101-74382008000100010 2-s2.0-46749130587 2-s2.0-46749130587.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pesquisa Operacional 0,365 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
173-196 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129456002301952 |