An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382014000100005 |
Resumo: | The 0-1 exact k-item quadratic knapsack problem (E - kQKP) consists of maximizing a quadratic function subject to two linear constraints: the first one is the classical linear capacity constraint; the second one is an equality cardinality constraint on the number of items in the knapsack. Most instances of this NP-hard problem with more than forty variables cannot be solved within one hour by a commercial software such as CPLEX 12.1. We propose therefore a fast and efficient heuristic method which produces both good lower and upper bounds on the value of the problem in reasonable time. Specifically, it integrates a primal heuristic and a semidefinite programming reduction phase within a surrogate dual heuristic. A large computational experiments over randomly generated instances with up to 200 variables validates the relevance of the bounds produced by our hybrid dual heuristic, which yields known optima (and prove optimality) in 90% (resp. 76%) within 100 seconds on the average. |
id |
SOBRAPO-1_c147f4552d9f8f57398ac8479940ad02 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382014000100005 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problemquadratic programming0-1 knapsackquadratic convex reformulationsemidefinite programmingsurrogate dualityhybridizationexperimentsThe 0-1 exact k-item quadratic knapsack problem (E - kQKP) consists of maximizing a quadratic function subject to two linear constraints: the first one is the classical linear capacity constraint; the second one is an equality cardinality constraint on the number of items in the knapsack. Most instances of this NP-hard problem with more than forty variables cannot be solved within one hour by a commercial software such as CPLEX 12.1. We propose therefore a fast and efficient heuristic method which produces both good lower and upper bounds on the value of the problem in reasonable time. Specifically, it integrates a primal heuristic and a semidefinite programming reduction phase within a surrogate dual heuristic. A large computational experiments over randomly generated instances with up to 200 variables validates the relevance of the bounds produced by our hybrid dual heuristic, which yields known optima (and prove optimality) in 90% (resp. 76%) within 100 seconds on the average.Sociedade Brasileira de Pesquisa Operacional2014-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382014000100005Pesquisa Operacional v.34 n.1 2014reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382014000100005info:eu-repo/semantics/openAccessLétocart,LucasPlateau,Marie-ChristinePlateau,Gérardeng2014-05-08T00:00:00Zoai:scielo:S0101-74382014000100005Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2014-05-08T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problem |
title |
An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problem |
spellingShingle |
An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problem Létocart,Lucas quadratic programming 0-1 knapsack quadratic convex reformulation semidefinite programming surrogate duality hybridization experiments |
title_short |
An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problem |
title_full |
An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problem |
title_fullStr |
An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problem |
title_full_unstemmed |
An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problem |
title_sort |
An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problem |
author |
Létocart,Lucas |
author_facet |
Létocart,Lucas Plateau,Marie-Christine Plateau,Gérard |
author_role |
author |
author2 |
Plateau,Marie-Christine Plateau,Gérard |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Létocart,Lucas Plateau,Marie-Christine Plateau,Gérard |
dc.subject.por.fl_str_mv |
quadratic programming 0-1 knapsack quadratic convex reformulation semidefinite programming surrogate duality hybridization experiments |
topic |
quadratic programming 0-1 knapsack quadratic convex reformulation semidefinite programming surrogate duality hybridization experiments |
description |
The 0-1 exact k-item quadratic knapsack problem (E - kQKP) consists of maximizing a quadratic function subject to two linear constraints: the first one is the classical linear capacity constraint; the second one is an equality cardinality constraint on the number of items in the knapsack. Most instances of this NP-hard problem with more than forty variables cannot be solved within one hour by a commercial software such as CPLEX 12.1. We propose therefore a fast and efficient heuristic method which produces both good lower and upper bounds on the value of the problem in reasonable time. Specifically, it integrates a primal heuristic and a semidefinite programming reduction phase within a surrogate dual heuristic. A large computational experiments over randomly generated instances with up to 200 variables validates the relevance of the bounds produced by our hybrid dual heuristic, which yields known optima (and prove optimality) in 90% (resp. 76%) within 100 seconds on the average. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382014000100005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382014000100005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382014000100005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.34 n.1 2014 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318017736081408 |