Diphenyl Diselenide and Clotrimazole Co-loaded into Eudragit® RS 100 Nanocapsules Formulation Has Superior Antioxidant Potential and Promising Anti-candida Activity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Archives of Biology and Technology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132020000100324 |
Resumo: | Abstract In the current study, nanocapsules (NC) formulations containing a co-load of clotrimazole (C), a highly prescribed antifungal drug, and diphenyl diselenide [(PhSe)2], an organoselenium compound with a promising scope of pharmacological actions, were prepared. Formulations were characterized as well as the potential toxicity, antioxidant action, and antifungal effect were assessed using in vitro techniques. The NCs were prepared employing Eudragit® RS 100 as polymeric wall and medium chain triglycerides or virgin coconut oil (CO) as core. All NC suspensions had pH around acid range, compound content close to theoretical value (1 mg/mL/drug), average diameter in nanometric range, positive values of zeta potential as well as high encapsulation efficacy and mucoadhesive property. Physicochemical stability was performed over a 30-day period and showed no modification in the aforementioned parameters to all samples. Preliminary screening of toxicological potential performed by the hen’s egg test chorioallantoic membrane technique classified the formulations as non-irritant. The DPPH radical assay revealed that nanoencapsulated compounds had superior antioxidant action in comparison to their free forms (concentration range tested 1.0-25.0 µg/mL). Importantly, the formulation composed of CO and containing C and (PhSe)2 showed the highest antioxidant potential and was selected for further investigation regarding antifungal effect against some Candida spp strains. Results of in vitro antifungal assay demonstrated that the C and (PhSe)2 co-encapsulation had a minimum inhibitory concentration (MIC) values around 60. Thus, our study supplies additional data about advantages achieved by encapsulating active compounds. |
id |
TECPAR-1_408bc180433af64b135e6d4b51b1d2b0 |
---|---|
oai_identifier_str |
oai:scielo:S1516-89132020000100324 |
network_acronym_str |
TECPAR-1 |
network_name_str |
Brazilian Archives of Biology and Technology |
repository_id_str |
|
spelling |
Diphenyl Diselenide and Clotrimazole Co-loaded into Eudragit® RS 100 Nanocapsules Formulation Has Superior Antioxidant Potential and Promising Anti-candida ActivitynanoparticlesseleniuminflammationCandida sppantioxidant propertyAbstract In the current study, nanocapsules (NC) formulations containing a co-load of clotrimazole (C), a highly prescribed antifungal drug, and diphenyl diselenide [(PhSe)2], an organoselenium compound with a promising scope of pharmacological actions, were prepared. Formulations were characterized as well as the potential toxicity, antioxidant action, and antifungal effect were assessed using in vitro techniques. The NCs were prepared employing Eudragit® RS 100 as polymeric wall and medium chain triglycerides or virgin coconut oil (CO) as core. All NC suspensions had pH around acid range, compound content close to theoretical value (1 mg/mL/drug), average diameter in nanometric range, positive values of zeta potential as well as high encapsulation efficacy and mucoadhesive property. Physicochemical stability was performed over a 30-day period and showed no modification in the aforementioned parameters to all samples. Preliminary screening of toxicological potential performed by the hen’s egg test chorioallantoic membrane technique classified the formulations as non-irritant. The DPPH radical assay revealed that nanoencapsulated compounds had superior antioxidant action in comparison to their free forms (concentration range tested 1.0-25.0 µg/mL). Importantly, the formulation composed of CO and containing C and (PhSe)2 showed the highest antioxidant potential and was selected for further investigation regarding antifungal effect against some Candida spp strains. Results of in vitro antifungal assay demonstrated that the C and (PhSe)2 co-encapsulation had a minimum inhibitory concentration (MIC) values around 60. Thus, our study supplies additional data about advantages achieved by encapsulating active compounds.Instituto de Tecnologia do Paraná - Tecpar2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132020000100324Brazilian Archives of Biology and Technology v.63 2020reponame:Brazilian Archives of Biology and Technologyinstname:Instituto de Tecnologia do Paraná (Tecpar)instacron:TECPAR10.1590/1678-4324-2020200087info:eu-repo/semantics/openAccessEnglert,Andrei ViníciusVerdi,Camila MarinaSantos,Roberto Christ ViannaCruz,LetíciaSari,Marcel Henrique Marcondeseng2020-10-14T00:00:00Zoai:scielo:S1516-89132020000100324Revistahttps://www.scielo.br/j/babt/https://old.scielo.br/oai/scielo-oai.phpbabt@tecpar.br||babt@tecpar.br1678-43241516-8913opendoar:2020-10-14T00:00Brazilian Archives of Biology and Technology - Instituto de Tecnologia do Paraná (Tecpar)false |
dc.title.none.fl_str_mv |
Diphenyl Diselenide and Clotrimazole Co-loaded into Eudragit® RS 100 Nanocapsules Formulation Has Superior Antioxidant Potential and Promising Anti-candida Activity |
title |
Diphenyl Diselenide and Clotrimazole Co-loaded into Eudragit® RS 100 Nanocapsules Formulation Has Superior Antioxidant Potential and Promising Anti-candida Activity |
spellingShingle |
Diphenyl Diselenide and Clotrimazole Co-loaded into Eudragit® RS 100 Nanocapsules Formulation Has Superior Antioxidant Potential and Promising Anti-candida Activity Englert,Andrei Vinícius nanoparticles selenium inflammation Candida spp antioxidant property |
title_short |
Diphenyl Diselenide and Clotrimazole Co-loaded into Eudragit® RS 100 Nanocapsules Formulation Has Superior Antioxidant Potential and Promising Anti-candida Activity |
title_full |
Diphenyl Diselenide and Clotrimazole Co-loaded into Eudragit® RS 100 Nanocapsules Formulation Has Superior Antioxidant Potential and Promising Anti-candida Activity |
title_fullStr |
Diphenyl Diselenide and Clotrimazole Co-loaded into Eudragit® RS 100 Nanocapsules Formulation Has Superior Antioxidant Potential and Promising Anti-candida Activity |
title_full_unstemmed |
Diphenyl Diselenide and Clotrimazole Co-loaded into Eudragit® RS 100 Nanocapsules Formulation Has Superior Antioxidant Potential and Promising Anti-candida Activity |
title_sort |
Diphenyl Diselenide and Clotrimazole Co-loaded into Eudragit® RS 100 Nanocapsules Formulation Has Superior Antioxidant Potential and Promising Anti-candida Activity |
author |
Englert,Andrei Vinícius |
author_facet |
Englert,Andrei Vinícius Verdi,Camila Marina Santos,Roberto Christ Vianna Cruz,Letícia Sari,Marcel Henrique Marcondes |
author_role |
author |
author2 |
Verdi,Camila Marina Santos,Roberto Christ Vianna Cruz,Letícia Sari,Marcel Henrique Marcondes |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Englert,Andrei Vinícius Verdi,Camila Marina Santos,Roberto Christ Vianna Cruz,Letícia Sari,Marcel Henrique Marcondes |
dc.subject.por.fl_str_mv |
nanoparticles selenium inflammation Candida spp antioxidant property |
topic |
nanoparticles selenium inflammation Candida spp antioxidant property |
description |
Abstract In the current study, nanocapsules (NC) formulations containing a co-load of clotrimazole (C), a highly prescribed antifungal drug, and diphenyl diselenide [(PhSe)2], an organoselenium compound with a promising scope of pharmacological actions, were prepared. Formulations were characterized as well as the potential toxicity, antioxidant action, and antifungal effect were assessed using in vitro techniques. The NCs were prepared employing Eudragit® RS 100 as polymeric wall and medium chain triglycerides or virgin coconut oil (CO) as core. All NC suspensions had pH around acid range, compound content close to theoretical value (1 mg/mL/drug), average diameter in nanometric range, positive values of zeta potential as well as high encapsulation efficacy and mucoadhesive property. Physicochemical stability was performed over a 30-day period and showed no modification in the aforementioned parameters to all samples. Preliminary screening of toxicological potential performed by the hen’s egg test chorioallantoic membrane technique classified the formulations as non-irritant. The DPPH radical assay revealed that nanoencapsulated compounds had superior antioxidant action in comparison to their free forms (concentration range tested 1.0-25.0 µg/mL). Importantly, the formulation composed of CO and containing C and (PhSe)2 showed the highest antioxidant potential and was selected for further investigation regarding antifungal effect against some Candida spp strains. Results of in vitro antifungal assay demonstrated that the C and (PhSe)2 co-encapsulation had a minimum inhibitory concentration (MIC) values around 60. Thus, our study supplies additional data about advantages achieved by encapsulating active compounds. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132020000100324 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132020000100324 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-4324-2020200087 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto de Tecnologia do Paraná - Tecpar |
publisher.none.fl_str_mv |
Instituto de Tecnologia do Paraná - Tecpar |
dc.source.none.fl_str_mv |
Brazilian Archives of Biology and Technology v.63 2020 reponame:Brazilian Archives of Biology and Technology instname:Instituto de Tecnologia do Paraná (Tecpar) instacron:TECPAR |
instname_str |
Instituto de Tecnologia do Paraná (Tecpar) |
instacron_str |
TECPAR |
institution |
TECPAR |
reponame_str |
Brazilian Archives of Biology and Technology |
collection |
Brazilian Archives of Biology and Technology |
repository.name.fl_str_mv |
Brazilian Archives of Biology and Technology - Instituto de Tecnologia do Paraná (Tecpar) |
repository.mail.fl_str_mv |
babt@tecpar.br||babt@tecpar.br |
_version_ |
1750318279977598976 |