The α-Tomatine Exhibits Antiproliferative Activity, Rupture of Cell Membranes and Induces the Expression of APC Gene in the Human Colorectal Adenocarcinoma Cell Line (Ht-29)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Archives of Biology and Technology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132020000100331 |
Resumo: | Abstract The α-tomatine is a steroidal glycoalkaloid found in immature tomatoes (Lycopersicon esculentum) that has important biological functions including the inhibition of cancer cell growth and preventing metastasis. This study aimed to evaluate the effects of α-tomatine on cytotoxicity, cellular proliferation, apoptosis, and mRNA expression of APC, CCNA2, β-catenin, CASP9, BAK, BAX and BCL-XL in colorectal adenocarcinoma cell line HT-29. HT29 cells were treated with three concentrations of α-tomatine (0.1, 1 and 10 µg/mL), although only the 1 µg/mL concentration of α-tomatine was used to evaluate genetic expression patterns by real time-PCR. Results showed that α-tomatine was cytotoxic only at the 10 µg/mL concentration. Cell proliferation was significantly inhibited after the first 24 hours of treatment only with concentrations of 10 µg/mL. In contrast, there were no significant differences in apoptosis for any treatment. In the gene expression studies, only APC expression was significantly altered by α-tomatine treatment. In conclusion, α-tomatine has antiproliferative activity in the first 24h of treatment, does not induce apoptosis in this cell line and causes disruption of cell membranes, thereby increasing the expression of APC gene related to cell cycle. |
id |
TECPAR-1_dc256e3a6966302a9c191eebad4e40a1 |
---|---|
oai_identifier_str |
oai:scielo:S1516-89132020000100331 |
network_acronym_str |
TECPAR-1 |
network_name_str |
Brazilian Archives of Biology and Technology |
repository_id_str |
|
spelling |
The α-Tomatine Exhibits Antiproliferative Activity, Rupture of Cell Membranes and Induces the Expression of APC Gene in the Human Colorectal Adenocarcinoma Cell Line (Ht-29)alpha-tomatinegene expressioncytotoxicitycell cycleDNA damageAbstract The α-tomatine is a steroidal glycoalkaloid found in immature tomatoes (Lycopersicon esculentum) that has important biological functions including the inhibition of cancer cell growth and preventing metastasis. This study aimed to evaluate the effects of α-tomatine on cytotoxicity, cellular proliferation, apoptosis, and mRNA expression of APC, CCNA2, β-catenin, CASP9, BAK, BAX and BCL-XL in colorectal adenocarcinoma cell line HT-29. HT29 cells were treated with three concentrations of α-tomatine (0.1, 1 and 10 µg/mL), although only the 1 µg/mL concentration of α-tomatine was used to evaluate genetic expression patterns by real time-PCR. Results showed that α-tomatine was cytotoxic only at the 10 µg/mL concentration. Cell proliferation was significantly inhibited after the first 24 hours of treatment only with concentrations of 10 µg/mL. In contrast, there were no significant differences in apoptosis for any treatment. In the gene expression studies, only APC expression was significantly altered by α-tomatine treatment. In conclusion, α-tomatine has antiproliferative activity in the first 24h of treatment, does not induce apoptosis in this cell line and causes disruption of cell membranes, thereby increasing the expression of APC gene related to cell cycle.Instituto de Tecnologia do Paraná - Tecpar2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132020000100331Brazilian Archives of Biology and Technology v.63 2020reponame:Brazilian Archives of Biology and Technologyinstname:Instituto de Tecnologia do Paraná (Tecpar)instacron:TECPAR10.1590/1678-4324-2020190395info:eu-repo/semantics/openAccessIshii,Priscila LumiOliveira,Rodrigo JulianoMauro,Mariana de OliveiraZorgetto-Pinheiro,Verônica AssalinSartori,DanieleLepri,Sandra ReginaBaranoski,AdrivanioMantovani,Mário SérgioRibeiro,Lúcia Reginaeng2020-10-22T00:00:00Zoai:scielo:S1516-89132020000100331Revistahttps://www.scielo.br/j/babt/https://old.scielo.br/oai/scielo-oai.phpbabt@tecpar.br||babt@tecpar.br1678-43241516-8913opendoar:2020-10-22T00:00Brazilian Archives of Biology and Technology - Instituto de Tecnologia do Paraná (Tecpar)false |
dc.title.none.fl_str_mv |
The α-Tomatine Exhibits Antiproliferative Activity, Rupture of Cell Membranes and Induces the Expression of APC Gene in the Human Colorectal Adenocarcinoma Cell Line (Ht-29) |
title |
The α-Tomatine Exhibits Antiproliferative Activity, Rupture of Cell Membranes and Induces the Expression of APC Gene in the Human Colorectal Adenocarcinoma Cell Line (Ht-29) |
spellingShingle |
The α-Tomatine Exhibits Antiproliferative Activity, Rupture of Cell Membranes and Induces the Expression of APC Gene in the Human Colorectal Adenocarcinoma Cell Line (Ht-29) Ishii,Priscila Lumi alpha-tomatine gene expression cytotoxicity cell cycle DNA damage |
title_short |
The α-Tomatine Exhibits Antiproliferative Activity, Rupture of Cell Membranes and Induces the Expression of APC Gene in the Human Colorectal Adenocarcinoma Cell Line (Ht-29) |
title_full |
The α-Tomatine Exhibits Antiproliferative Activity, Rupture of Cell Membranes and Induces the Expression of APC Gene in the Human Colorectal Adenocarcinoma Cell Line (Ht-29) |
title_fullStr |
The α-Tomatine Exhibits Antiproliferative Activity, Rupture of Cell Membranes and Induces the Expression of APC Gene in the Human Colorectal Adenocarcinoma Cell Line (Ht-29) |
title_full_unstemmed |
The α-Tomatine Exhibits Antiproliferative Activity, Rupture of Cell Membranes and Induces the Expression of APC Gene in the Human Colorectal Adenocarcinoma Cell Line (Ht-29) |
title_sort |
The α-Tomatine Exhibits Antiproliferative Activity, Rupture of Cell Membranes and Induces the Expression of APC Gene in the Human Colorectal Adenocarcinoma Cell Line (Ht-29) |
author |
Ishii,Priscila Lumi |
author_facet |
Ishii,Priscila Lumi Oliveira,Rodrigo Juliano Mauro,Mariana de Oliveira Zorgetto-Pinheiro,Verônica Assalin Sartori,Daniele Lepri,Sandra Regina Baranoski,Adrivanio Mantovani,Mário Sérgio Ribeiro,Lúcia Regina |
author_role |
author |
author2 |
Oliveira,Rodrigo Juliano Mauro,Mariana de Oliveira Zorgetto-Pinheiro,Verônica Assalin Sartori,Daniele Lepri,Sandra Regina Baranoski,Adrivanio Mantovani,Mário Sérgio Ribeiro,Lúcia Regina |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Ishii,Priscila Lumi Oliveira,Rodrigo Juliano Mauro,Mariana de Oliveira Zorgetto-Pinheiro,Verônica Assalin Sartori,Daniele Lepri,Sandra Regina Baranoski,Adrivanio Mantovani,Mário Sérgio Ribeiro,Lúcia Regina |
dc.subject.por.fl_str_mv |
alpha-tomatine gene expression cytotoxicity cell cycle DNA damage |
topic |
alpha-tomatine gene expression cytotoxicity cell cycle DNA damage |
description |
Abstract The α-tomatine is a steroidal glycoalkaloid found in immature tomatoes (Lycopersicon esculentum) that has important biological functions including the inhibition of cancer cell growth and preventing metastasis. This study aimed to evaluate the effects of α-tomatine on cytotoxicity, cellular proliferation, apoptosis, and mRNA expression of APC, CCNA2, β-catenin, CASP9, BAK, BAX and BCL-XL in colorectal adenocarcinoma cell line HT-29. HT29 cells were treated with three concentrations of α-tomatine (0.1, 1 and 10 µg/mL), although only the 1 µg/mL concentration of α-tomatine was used to evaluate genetic expression patterns by real time-PCR. Results showed that α-tomatine was cytotoxic only at the 10 µg/mL concentration. Cell proliferation was significantly inhibited after the first 24 hours of treatment only with concentrations of 10 µg/mL. In contrast, there were no significant differences in apoptosis for any treatment. In the gene expression studies, only APC expression was significantly altered by α-tomatine treatment. In conclusion, α-tomatine has antiproliferative activity in the first 24h of treatment, does not induce apoptosis in this cell line and causes disruption of cell membranes, thereby increasing the expression of APC gene related to cell cycle. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132020000100331 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132020000100331 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-4324-2020190395 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto de Tecnologia do Paraná - Tecpar |
publisher.none.fl_str_mv |
Instituto de Tecnologia do Paraná - Tecpar |
dc.source.none.fl_str_mv |
Brazilian Archives of Biology and Technology v.63 2020 reponame:Brazilian Archives of Biology and Technology instname:Instituto de Tecnologia do Paraná (Tecpar) instacron:TECPAR |
instname_str |
Instituto de Tecnologia do Paraná (Tecpar) |
instacron_str |
TECPAR |
institution |
TECPAR |
reponame_str |
Brazilian Archives of Biology and Technology |
collection |
Brazilian Archives of Biology and Technology |
repository.name.fl_str_mv |
Brazilian Archives of Biology and Technology - Instituto de Tecnologia do Paraná (Tecpar) |
repository.mail.fl_str_mv |
babt@tecpar.br||babt@tecpar.br |
_version_ |
1750318279991230464 |