Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Archives of Biology and Technology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132005000400002 |
Resumo: | In this work a MIMO non-linear predictive controller was developed for an extractive alcoholic fermentation process. The internal model of the controller was represented by two MISO Functional Link Networks (FLNs), identified using simulated data generated from a deterministic mathematical model whose kinetic parameters were determined experimentally. The FLN structure presents as advantages fast training and guaranteed convergence, since the estimation of the weights is a linear optimization problem. Besides, the elimination of non-significant weights generates parsimonious models, which allows for fast execution in an MPC-based algorithm. The proposed algorithm showed good potential in identification and control of non-linear processes. |
id |
TECPAR-1_df0a86a6f9df83ff1819a236bf4638bb |
---|---|
oai_identifier_str |
oai:scielo:S1516-89132005000400002 |
network_acronym_str |
TECPAR-1 |
network_name_str |
Brazilian Archives of Biology and Technology |
repository_id_str |
|
spelling |
Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networksExtractive alcoholic fermentationfunctional link neural networksnon-linear predictive controlIn this work a MIMO non-linear predictive controller was developed for an extractive alcoholic fermentation process. The internal model of the controller was represented by two MISO Functional Link Networks (FLNs), identified using simulated data generated from a deterministic mathematical model whose kinetic parameters were determined experimentally. The FLN structure presents as advantages fast training and guaranteed convergence, since the estimation of the weights is a linear optimization problem. Besides, the elimination of non-significant weights generates parsimonious models, which allows for fast execution in an MPC-based algorithm. The proposed algorithm showed good potential in identification and control of non-linear processes.Instituto de Tecnologia do Paraná - Tecpar2005-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132005000400002Brazilian Archives of Biology and Technology v.48 n.spe 2005reponame:Brazilian Archives of Biology and Technologyinstname:Instituto de Tecnologia do Paraná (Tecpar)instacron:TECPAR10.1590/S1516-89132005000400002info:eu-repo/semantics/openAccessMeleiro,Luiz Augusto da CruzCosta,Aline Carvalho daMaciel Filho,Rubenseng2005-08-15T00:00:00Zoai:scielo:S1516-89132005000400002Revistahttps://www.scielo.br/j/babt/https://old.scielo.br/oai/scielo-oai.phpbabt@tecpar.br||babt@tecpar.br1678-43241516-8913opendoar:2005-08-15T00:00Brazilian Archives of Biology and Technology - Instituto de Tecnologia do Paraná (Tecpar)false |
dc.title.none.fl_str_mv |
Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks |
title |
Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks |
spellingShingle |
Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks Meleiro,Luiz Augusto da Cruz Extractive alcoholic fermentation functional link neural networks non-linear predictive control |
title_short |
Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks |
title_full |
Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks |
title_fullStr |
Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks |
title_full_unstemmed |
Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks |
title_sort |
Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks |
author |
Meleiro,Luiz Augusto da Cruz |
author_facet |
Meleiro,Luiz Augusto da Cruz Costa,Aline Carvalho da Maciel Filho,Rubens |
author_role |
author |
author2 |
Costa,Aline Carvalho da Maciel Filho,Rubens |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Meleiro,Luiz Augusto da Cruz Costa,Aline Carvalho da Maciel Filho,Rubens |
dc.subject.por.fl_str_mv |
Extractive alcoholic fermentation functional link neural networks non-linear predictive control |
topic |
Extractive alcoholic fermentation functional link neural networks non-linear predictive control |
description |
In this work a MIMO non-linear predictive controller was developed for an extractive alcoholic fermentation process. The internal model of the controller was represented by two MISO Functional Link Networks (FLNs), identified using simulated data generated from a deterministic mathematical model whose kinetic parameters were determined experimentally. The FLN structure presents as advantages fast training and guaranteed convergence, since the estimation of the weights is a linear optimization problem. Besides, the elimination of non-significant weights generates parsimonious models, which allows for fast execution in an MPC-based algorithm. The proposed algorithm showed good potential in identification and control of non-linear processes. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132005000400002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132005000400002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-89132005000400002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto de Tecnologia do Paraná - Tecpar |
publisher.none.fl_str_mv |
Instituto de Tecnologia do Paraná - Tecpar |
dc.source.none.fl_str_mv |
Brazilian Archives of Biology and Technology v.48 n.spe 2005 reponame:Brazilian Archives of Biology and Technology instname:Instituto de Tecnologia do Paraná (Tecpar) instacron:TECPAR |
instname_str |
Instituto de Tecnologia do Paraná (Tecpar) |
instacron_str |
TECPAR |
institution |
TECPAR |
reponame_str |
Brazilian Archives of Biology and Technology |
collection |
Brazilian Archives of Biology and Technology |
repository.name.fl_str_mv |
Brazilian Archives of Biology and Technology - Instituto de Tecnologia do Paraná (Tecpar) |
repository.mail.fl_str_mv |
babt@tecpar.br||babt@tecpar.br |
_version_ |
1750318270289805312 |