Uma an??lise espacial dos empregos e das empresas no Brasil

Detalhes bibliográficos
Autor(a) principal: Ferreira, R??bia Silene Alegre
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UCB
Texto Completo: https://bdtd.ucb.br:8443/jspui/handle/tede/2541
Resumo: The general objective of this study was to work in a methodology that would allow the development of two parameters to evaluate the concentration of productive sectors by regions and time periods. Specifically, it was sought: a) to verify the agglomeration of jobs and companies by regions, states and sectors in Brazil; and b) introduce two parameters that allow the evaluation of the concentration of productive sectors by region and time period. The years considered to reach the established objectives extend from 1994 to 2015. For the first objective a spatial analysis of agglomerations assisted by graphs was made. In relation to the second objective, we adopted the Locational Quotient (QL) technique, which allows us to identify the concentration of variables analyzed in this study. QL uses three indices in its definition (one to refer to the sector, another the region and the last to the time). Therefore, when fixing the index that refers to the region, the other two indexes defined a sequence of matrices, where each one was defined as Regional Matrix of Locational Quotients. Considering that each matrix has a covariance matrix, it was possible to define the parameters: first, as the norm of eigenvalues (NAV), which contains all the eigenvalues of the covariance matrix associated with it; the second in turn, Percentages Greater than one (PMU), which presents the largest percentages, tending to one, in the regional matrix. Data were obtained from the Integrated Automatic Data Recovery System (SIDRA), from the Brazilian Institute of Geography and Statistics (IBGE). The software used to manipulate the data consisted of Excel, Scilab 6.0 and Siad. Based on the results it was observed that the parameters introduced here synthesize the concentration of the sectors throughout each period for the regions. In this way, it can be concluded that the use of the parameters can be useful in the investigation of the local economic problems, indicating clues that point to the real needs of regional development.
id UCB_cf3d8df9c4ad281820b3986dc6275dd7
oai_identifier_str oai:bdtd.ucb.br:tede/2541
network_acronym_str UCB
network_name_str Biblioteca Digital de Teses e Dissertações da UCB
spelling Sandoval, Wilfredo Sosahttp://lattes.cnpq.br/6348109836924616http://lattes.cnpq.br/6601087522831430Ferreira, R??bia Silene Alegre2019-05-17T14:26:18Z2018-12-14FERREIRA, R??bia Silene Alegre. Uma an??lise espacial dos empregos e das empresas no Brasil. 2018. 54 f. Tese (Programa Stricto Sensu em Economia de Empresas) - Universidade Cat??lica de Bras??lia, Bras??lia, 2018.https://bdtd.ucb.br:8443/jspui/handle/tede/2541The general objective of this study was to work in a methodology that would allow the development of two parameters to evaluate the concentration of productive sectors by regions and time periods. Specifically, it was sought: a) to verify the agglomeration of jobs and companies by regions, states and sectors in Brazil; and b) introduce two parameters that allow the evaluation of the concentration of productive sectors by region and time period. The years considered to reach the established objectives extend from 1994 to 2015. For the first objective a spatial analysis of agglomerations assisted by graphs was made. In relation to the second objective, we adopted the Locational Quotient (QL) technique, which allows us to identify the concentration of variables analyzed in this study. QL uses three indices in its definition (one to refer to the sector, another the region and the last to the time). Therefore, when fixing the index that refers to the region, the other two indexes defined a sequence of matrices, where each one was defined as Regional Matrix of Locational Quotients. Considering that each matrix has a covariance matrix, it was possible to define the parameters: first, as the norm of eigenvalues (NAV), which contains all the eigenvalues of the covariance matrix associated with it; the second in turn, Percentages Greater than one (PMU), which presents the largest percentages, tending to one, in the regional matrix. Data were obtained from the Integrated Automatic Data Recovery System (SIDRA), from the Brazilian Institute of Geography and Statistics (IBGE). The software used to manipulate the data consisted of Excel, Scilab 6.0 and Siad. Based on the results it was observed that the parameters introduced here synthesize the concentration of the sectors throughout each period for the regions. In this way, it can be concluded that the use of the parameters can be useful in the investigation of the local economic problems, indicating clues that point to the real needs of regional development.O objetivo geral deste estudo foi o de trabalhar em uma metodologia que possibilitasse o desenvolvimento de dois par??metros para avaliar a concentra????o de setores produtivos por regi??es e per??odos de tempo. Especificamente, buscou-se: a) verificar a aglomera????o dos empregos e das empresas por regi??es, estados e setores no Brasil; e b) introduzir dois par??metros que possibilitem a avalia????o da concentra????o dos setores produtivos por regi??es e per??odo de tempo. Os anos considerados para alcan??ar os objetivos estabelecidos se estendem de 1994 a 2015. Para o primeiro objetivo fez-se uma an??lise espacial das aglomera????es auxiliada por gr??ficos. Em rela????o ao segundo objetivo, adotou-se a t??cnica do Quociente Locacional (QL), que permite identificar a concentra????o das vari??veis analisadas neste estudo. O QL utiliza tr??s ??ndices na sua defini????o (um para referenciar ao setor, outro a regi??o e o ??ltimo ao tempo). Portanto, ao se fixar o ??ndice que faz refer??ncia ?? regi??o, os outros dois ??ndices definiram uma sequ??ncia de matrizes, onde cada uma delas foi definida como Matriz Regional de Quocientes Locacionais. Considerando-se que cada matriz tem associada uma matriz de covari??ncia, assim foi poss??vel se definir os par??metros: o primeiro, como a Norma de Autovalores (NAV), que cont??m todos os autovalores da matriz de covari??ncia a ela associada; o segundo por sua vez, Porcentagens Maiores que um (PMU), que apresenta as porcentagens maiores, tendendo a um, na matriz regional. Os dados foram obtidos no Sistema Integrado de Dados de Recupera????o Autom??tica (SIDRA), do Instituto Brasileiro de Geografia e Estat??stica (IBGE). Os softwares utilizados para a manipula????o dos dados consistiram no Excel, Scilab 6.0 e Siad. Com base nos resultados observou-se que os par??metros ora introduzidos sintetizam a concentra????o dos setores ao longo de cada per??odo para as regi??es. Desta forma, conclui-se que o uso dos par??metros pode ser ??til na investiga????o dos problemas econ??micos locais, sinalizando pistas que apontem as reais necessidades de desenvolvimento regional.Submitted by Sara Ribeiro (sara.ribeiro@ucb.br) on 2019-05-17T14:25:49Z No. of bitstreams: 1 RubiaSileneAlegreFerreiraTese2018.pdf: 1583978 bytes, checksum: 538de9081ecc028c7f6c5e81ba041911 (MD5)Approved for entry into archive by Sara Ribeiro (sara.ribeiro@ucb.br) on 2019-05-17T14:26:18Z (GMT) No. of bitstreams: 1 RubiaSileneAlegreFerreiraTese2018.pdf: 1583978 bytes, checksum: 538de9081ecc028c7f6c5e81ba041911 (MD5)Made available in DSpace on 2019-05-17T14:26:18Z (GMT). No. of bitstreams: 1 RubiaSileneAlegreFerreiraTese2018.pdf: 1583978 bytes, checksum: 538de9081ecc028c7f6c5e81ba041911 (MD5) Previous issue date: 2018-12-14application/pdfhttps://bdtd.ucb.br:8443/jspui/retrieve/6282/RubiaSileneAlegreFerreiraTese2018.pdf.jpgporUniversidade Cat??lica de Bras??liaPrograma Stricto Sensu em Economia de EmpresasUCBBrasilEscola de Gest??o e Neg??ciosEmpresaEmpregosAglomera????oQuociente Locacional RegionalRegional Locational QuotientAgglomerationCompaniesJobsCNPQ::CIENCIAS SOCIAIS APLICADAS::ECONOMIAUma an??lise espacial dos empregos e das empresas no Brasilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UCBinstname:Universidade Católica de Brasília (UCB)instacron:UCBLICENSElicense.txtlicense.txttext/plain; charset=utf-81905https://200.214.135.178:8443/jspui/bitstream/tede/2541/1/license.txt75558dcf859532757239878b42f1c2c7MD51ORIGINALRubiaSileneAlegreFerreiraTese2018.pdfRubiaSileneAlegreFerreiraTese2018.pdfapplication/pdf1583978https://200.214.135.178:8443/jspui/bitstream/tede/2541/2/RubiaSileneAlegreFerreiraTese2018.pdf538de9081ecc028c7f6c5e81ba041911MD52TEXTRubiaSileneAlegreFerreiraTese2018.pdf.txtRubiaSileneAlegreFerreiraTese2018.pdf.txttext/plain120996https://200.214.135.178:8443/jspui/bitstream/tede/2541/3/RubiaSileneAlegreFerreiraTese2018.pdf.txtbf4c89b0822bce8a8c444d72d267c8d0MD53THUMBNAILRubiaSileneAlegreFerreiraTese2018.pdf.jpgRubiaSileneAlegreFerreiraTese2018.pdf.jpgimage/jpeg5545https://200.214.135.178:8443/jspui/bitstream/tede/2541/4/RubiaSileneAlegreFerreiraTese2018.pdf.jpgeeee036bf84c76e047ac27552a578765MD54tede/25412019-05-18 01:05:54.596TElDRU4/P0EgREUgRElTVFJJQlVJPz8/P08gTj8/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/Pz9vIGRlc3RhIGxpY2VuPz9hLCB2b2M/PyAoYXV0b3Igb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/PyBVbml2ZXJzaWRhZGUgQ2F0Pz9saWNhIGRlIEJyYXM/P2xpYSAoVUNCKSBvIGRpcmVpdG8gbj8/by1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz8/P28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHI/P25pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3MgPz91ZGlvIG91IHY/P2Rlby4KClZvYz8/IGNvbmNvcmRhIHF1ZSBhIFVDQiBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlPz9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/Pz9vIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YT8/Pz9vLgoKVm9jPz8gdGFtYj8/bSBjb25jb3JkYSBxdWUgYSBVQ0IgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgYz8/cGlhIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/Pz8/byBwYXJhIGZpbnMgZGUgc2VndXJhbj8/YSwgYmFjay11cCBlIHByZXNlcnZhPz8/P28uCgpWb2M/PyBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz8/P28gPz8gb3JpZ2luYWwgZSBxdWUgdm9jPz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW4/P2EuIFZvYz8/IHRhbWI/P20gZGVjbGFyYSBxdWUgbyBkZXA/P3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/Pz8/byBuPz9vIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1Pz9tLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz8/P28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvYz8/IG4/P28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPz8gZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz8/byBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyID8/IFVDQiBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW4/P2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdD8/IGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGU/P2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/Pz8/byBvcmEgZGVwb3NpdGFkYS4KCkNhc28gYSB0ZXNlIG91IGRpc3NlcnRhPz8/P28gZGVwb3NpdGFkYSB0ZW5oYSBzaWRvIHJlc3VsdGFkbyBkZSB1bSBwYXRyb2M/P25pbyBvdSBhcG9pbyBkZSB1bWEgYWc/P25jaWEgZGUgZm9tZW50byBvdSBvdXRybyBvcmdhbmlzbW8gcXVlIG4/P28gc2VqYSBhIFVDQiwgdm9jPz8gZGVjbGFyYSBxdWUgcmVzcGVpdG91IHRvZG9zIGUgcXVhaXNxdWVyIGRpcmVpdG9zIGRlIHJldmlzPz9vIGNvbW8gdGFtYj8/bSBhcyBkZW1haXMgb2JyaWdhPz8/P2VzIGV4aWdpZGFzIHBvciBjb250cmF0byBvdSBhY29yZG8uCgpBIFVDQiBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhPz8/P28sIGUgbj8/byBmYXI/PyBxdWFscXVlciBhbHRlcmE/Pz8/bywgYWw/P20gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbj8/YS4KBiblioteca Digital de Teses e Dissertaçõeshttps://bdtd.ucb.br:8443/jspui/
dc.title.por.fl_str_mv Uma an??lise espacial dos empregos e das empresas no Brasil
title Uma an??lise espacial dos empregos e das empresas no Brasil
spellingShingle Uma an??lise espacial dos empregos e das empresas no Brasil
Ferreira, R??bia Silene Alegre
Empresa
Empregos
Aglomera????o
Quociente Locacional Regional
Regional Locational Quotient
Agglomeration
Companies
Jobs
CNPQ::CIENCIAS SOCIAIS APLICADAS::ECONOMIA
title_short Uma an??lise espacial dos empregos e das empresas no Brasil
title_full Uma an??lise espacial dos empregos e das empresas no Brasil
title_fullStr Uma an??lise espacial dos empregos e das empresas no Brasil
title_full_unstemmed Uma an??lise espacial dos empregos e das empresas no Brasil
title_sort Uma an??lise espacial dos empregos e das empresas no Brasil
author Ferreira, R??bia Silene Alegre
author_facet Ferreira, R??bia Silene Alegre
author_role author
dc.contributor.advisor1.fl_str_mv Sandoval, Wilfredo Sosa
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6348109836924616
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6601087522831430
dc.contributor.author.fl_str_mv Ferreira, R??bia Silene Alegre
contributor_str_mv Sandoval, Wilfredo Sosa
dc.subject.por.fl_str_mv Empresa
Empregos
Aglomera????o
Quociente Locacional Regional
topic Empresa
Empregos
Aglomera????o
Quociente Locacional Regional
Regional Locational Quotient
Agglomeration
Companies
Jobs
CNPQ::CIENCIAS SOCIAIS APLICADAS::ECONOMIA
dc.subject.eng.fl_str_mv Regional Locational Quotient
Agglomeration
Companies
Jobs
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS SOCIAIS APLICADAS::ECONOMIA
dc.description.abstract.eng.fl_txt_mv The general objective of this study was to work in a methodology that would allow the development of two parameters to evaluate the concentration of productive sectors by regions and time periods. Specifically, it was sought: a) to verify the agglomeration of jobs and companies by regions, states and sectors in Brazil; and b) introduce two parameters that allow the evaluation of the concentration of productive sectors by region and time period. The years considered to reach the established objectives extend from 1994 to 2015. For the first objective a spatial analysis of agglomerations assisted by graphs was made. In relation to the second objective, we adopted the Locational Quotient (QL) technique, which allows us to identify the concentration of variables analyzed in this study. QL uses three indices in its definition (one to refer to the sector, another the region and the last to the time). Therefore, when fixing the index that refers to the region, the other two indexes defined a sequence of matrices, where each one was defined as Regional Matrix of Locational Quotients. Considering that each matrix has a covariance matrix, it was possible to define the parameters: first, as the norm of eigenvalues (NAV), which contains all the eigenvalues of the covariance matrix associated with it; the second in turn, Percentages Greater than one (PMU), which presents the largest percentages, tending to one, in the regional matrix. Data were obtained from the Integrated Automatic Data Recovery System (SIDRA), from the Brazilian Institute of Geography and Statistics (IBGE). The software used to manipulate the data consisted of Excel, Scilab 6.0 and Siad. Based on the results it was observed that the parameters introduced here synthesize the concentration of the sectors throughout each period for the regions. In this way, it can be concluded that the use of the parameters can be useful in the investigation of the local economic problems, indicating clues that point to the real needs of regional development.
dc.description.abstract.por.fl_txt_mv O objetivo geral deste estudo foi o de trabalhar em uma metodologia que possibilitasse o desenvolvimento de dois par??metros para avaliar a concentra????o de setores produtivos por regi??es e per??odos de tempo. Especificamente, buscou-se: a) verificar a aglomera????o dos empregos e das empresas por regi??es, estados e setores no Brasil; e b) introduzir dois par??metros que possibilitem a avalia????o da concentra????o dos setores produtivos por regi??es e per??odo de tempo. Os anos considerados para alcan??ar os objetivos estabelecidos se estendem de 1994 a 2015. Para o primeiro objetivo fez-se uma an??lise espacial das aglomera????es auxiliada por gr??ficos. Em rela????o ao segundo objetivo, adotou-se a t??cnica do Quociente Locacional (QL), que permite identificar a concentra????o das vari??veis analisadas neste estudo. O QL utiliza tr??s ??ndices na sua defini????o (um para referenciar ao setor, outro a regi??o e o ??ltimo ao tempo). Portanto, ao se fixar o ??ndice que faz refer??ncia ?? regi??o, os outros dois ??ndices definiram uma sequ??ncia de matrizes, onde cada uma delas foi definida como Matriz Regional de Quocientes Locacionais. Considerando-se que cada matriz tem associada uma matriz de covari??ncia, assim foi poss??vel se definir os par??metros: o primeiro, como a Norma de Autovalores (NAV), que cont??m todos os autovalores da matriz de covari??ncia a ela associada; o segundo por sua vez, Porcentagens Maiores que um (PMU), que apresenta as porcentagens maiores, tendendo a um, na matriz regional. Os dados foram obtidos no Sistema Integrado de Dados de Recupera????o Autom??tica (SIDRA), do Instituto Brasileiro de Geografia e Estat??stica (IBGE). Os softwares utilizados para a manipula????o dos dados consistiram no Excel, Scilab 6.0 e Siad. Com base nos resultados observou-se que os par??metros ora introduzidos sintetizam a concentra????o dos setores ao longo de cada per??odo para as regi??es. Desta forma, conclui-se que o uso dos par??metros pode ser ??til na investiga????o dos problemas econ??micos locais, sinalizando pistas que apontem as reais necessidades de desenvolvimento regional.
description The general objective of this study was to work in a methodology that would allow the development of two parameters to evaluate the concentration of productive sectors by regions and time periods. Specifically, it was sought: a) to verify the agglomeration of jobs and companies by regions, states and sectors in Brazil; and b) introduce two parameters that allow the evaluation of the concentration of productive sectors by region and time period. The years considered to reach the established objectives extend from 1994 to 2015. For the first objective a spatial analysis of agglomerations assisted by graphs was made. In relation to the second objective, we adopted the Locational Quotient (QL) technique, which allows us to identify the concentration of variables analyzed in this study. QL uses three indices in its definition (one to refer to the sector, another the region and the last to the time). Therefore, when fixing the index that refers to the region, the other two indexes defined a sequence of matrices, where each one was defined as Regional Matrix of Locational Quotients. Considering that each matrix has a covariance matrix, it was possible to define the parameters: first, as the norm of eigenvalues (NAV), which contains all the eigenvalues of the covariance matrix associated with it; the second in turn, Percentages Greater than one (PMU), which presents the largest percentages, tending to one, in the regional matrix. Data were obtained from the Integrated Automatic Data Recovery System (SIDRA), from the Brazilian Institute of Geography and Statistics (IBGE). The software used to manipulate the data consisted of Excel, Scilab 6.0 and Siad. Based on the results it was observed that the parameters introduced here synthesize the concentration of the sectors throughout each period for the regions. In this way, it can be concluded that the use of the parameters can be useful in the investigation of the local economic problems, indicating clues that point to the real needs of regional development.
publishDate 2018
dc.date.issued.fl_str_mv 2018-12-14
dc.date.accessioned.fl_str_mv 2019-05-17T14:26:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.citation.fl_str_mv FERREIRA, R??bia Silene Alegre. Uma an??lise espacial dos empregos e das empresas no Brasil. 2018. 54 f. Tese (Programa Stricto Sensu em Economia de Empresas) - Universidade Cat??lica de Bras??lia, Bras??lia, 2018.
dc.identifier.uri.fl_str_mv https://bdtd.ucb.br:8443/jspui/handle/tede/2541
identifier_str_mv FERREIRA, R??bia Silene Alegre. Uma an??lise espacial dos empregos e das empresas no Brasil. 2018. 54 f. Tese (Programa Stricto Sensu em Economia de Empresas) - Universidade Cat??lica de Bras??lia, Bras??lia, 2018.
url https://bdtd.ucb.br:8443/jspui/handle/tede/2541
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Cat??lica de Bras??lia
dc.publisher.program.fl_str_mv Programa Stricto Sensu em Economia de Empresas
dc.publisher.initials.fl_str_mv UCB
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola de Gest??o e Neg??cios
publisher.none.fl_str_mv Universidade Cat??lica de Bras??lia
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UCB
instname:Universidade Católica de Brasília (UCB)
instacron:UCB
instname_str Universidade Católica de Brasília (UCB)
instacron_str UCB
institution UCB
reponame_str Biblioteca Digital de Teses e Dissertações da UCB
collection Biblioteca Digital de Teses e Dissertações da UCB
bitstream.url.fl_str_mv https://200.214.135.178:8443/jspui/bitstream/tede/2541/1/license.txt
https://200.214.135.178:8443/jspui/bitstream/tede/2541/2/RubiaSileneAlegreFerreiraTese2018.pdf
https://200.214.135.178:8443/jspui/bitstream/tede/2541/3/RubiaSileneAlegreFerreiraTese2018.pdf.txt
https://200.214.135.178:8443/jspui/bitstream/tede/2541/4/RubiaSileneAlegreFerreiraTese2018.pdf.jpg
bitstream.checksum.fl_str_mv 75558dcf859532757239878b42f1c2c7
538de9081ecc028c7f6c5e81ba041911
bf4c89b0822bce8a8c444d72d267c8d0
eeee036bf84c76e047ac27552a578765
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1724829779337674752